IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38234-w.html
   My bibliography  Save this article

Causal associations between cardiorespiratory fitness and type 2 diabetes

Author

Listed:
  • Lina Cai

    (University of Cambridge)

  • Tomas Gonzales

    (University of Cambridge)

  • Eleanor Wheeler

    (University of Cambridge)

  • Nicola D. Kerrison

    (University of Cambridge)

  • Felix R. Day

    (University of Cambridge)

  • Claudia Langenberg

    (University of Cambridge)

  • John R. B. Perry

    (University of Cambridge)

  • Soren Brage

    (University of Cambridge)

  • Nicholas J. Wareham

    (University of Cambridge)

Abstract

Higher cardiorespiratory fitness is associated with lower risk of type 2 diabetes. However, the causality of this relationship and the biological mechanisms that underlie it are unclear. Here, we examine genetic determinants of cardiorespiratory fitness in 450k European-ancestry individuals in UK Biobank, by leveraging the genetic overlap between fitness measured by an exercise test and resting heart rate. We identified 160 fitness-associated loci which we validated in an independent cohort, the Fenland study. Gene-based analyses prioritised candidate genes, such as CACNA1C, SCN10A, MYH11 and MYH6, that are enriched in biological processes related to cardiac muscle development and muscle contractility. In a Mendelian Randomisation framework, we demonstrate that higher genetically predicted fitness is causally associated with lower risk of type 2 diabetes independent of adiposity. Integration with proteomic data identified N-terminal pro B-type natriuretic peptide, hepatocyte growth factor-like protein and sex hormone-binding globulin as potential mediators of this relationship. Collectively, our findings provide insights into the biological mechanisms underpinning cardiorespiratory fitness and highlight the importance of improving fitness for diabetes prevention.

Suggested Citation

  • Lina Cai & Tomas Gonzales & Eleanor Wheeler & Nicola D. Kerrison & Felix R. Day & Claudia Langenberg & John R. B. Perry & Soren Brage & Nicholas J. Wareham, 2023. "Causal associations between cardiorespiratory fitness and type 2 diabetes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38234-w
    DOI: 10.1038/s41467-023-38234-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38234-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38234-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Huang & Bryan Howie & Shane McCarthy & Yasin Memari & Klaudia Walter & Josine L. Min & Petr Danecek & Giovanni Malerba & Elisabetta Trabetti & Hou-Feng Zheng & Giovanni Gambaro & J. Brent Richards, 2015. "Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    2. Christiaan A de Leeuw & Joris M Mooij & Tom Heskes & Danielle Posthuma, 2015. "MAGMA: Generalized Gene-Set Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-19, April.
    3. Kyoko Watanabe & Erdogan Taskesen & Arjen Bochoven & Danielle Posthuma, 2017. "Functional mapping and annotation of genetic associations with FUMA," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    4. Ayellet V Segrè & DIAGRAM Consortium & MAGIC investigators & Leif Groop & Vamsi K Mootha & Mark J Daly & David Altshuler, 2010. "Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits," PLOS Genetics, Public Library of Science, vol. 6(8), pages 1-19, August.
    5. Tune H. Pers & Juha M. Karjalainen & Yingleong Chan & Harm-Jan Westra & Andrew R. Wood & Jian Yang & Julian C. Lui & Sailaja Vedantam & Stefan Gustafsson & Tonu Esko & Tim Frayling & Elizabeth K. Spel, 2015. "Biological interpretation of genome-wide association studies using predicted gene functions," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    6. Tom White & Kate Westgate & Nicholas J Wareham & Soren Brage, 2016. "Estimation of Physical Activity Energy Expenditure during Free-Living from Wrist Accelerometry in UK Adults," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-11, December.
    7. Maik Pietzner & Eleanor Wheeler & Julia Carrasco-Zanini & Johannes Raffler & Nicola D. Kerrison & Erin Oerton & Victoria P. W. Auyeung & Jian’an Luan & Chris Finan & Juan P. Casas & Rachel Ostroff & S, 2020. "Genetic architecture of host proteins involved in SARS-CoV-2 infection," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    8. Gibran Hemani & Kate Tilling & George Davey Smith, 2017. "Orienting the causal relationship between imprecisely measured traits using GWAS summary data," PLOS Genetics, Public Library of Science, vol. 13(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofeng Zhu & Yihe Yang & Noah Lorincz-Comi & Gen Li & Amy R. Bentley & Paul S. de Vries & Michael Brown & Alanna C. Morrison & Charles N. Rotimi & W. James Gauderman & Dabeeru C. Rao & Hugues Aschar, 2024. "An approach to identify gene-environment interactions and reveal new biological insight in complex traits," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Catherine M. Francis & Matthias E. Futschik & Jian Huang & Wenjia Bai & Muralidharan Sargurupremraj & Alexander Teumer & Monique M. B. Breteler & Enrico Petretto & Amanda S. R. Ho & Philippe Amouyel &, 2022. "Genome-wide associations of aortic distensibility suggest causality for aortic aneurysms and brain white matter hyperintensities," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Richard Burns & William J. Young & Nay Aung & Luis R. Lopes & Perry M. Elliott & Petros Syrris & Roberto Barriales-Villa & Catrin Sohrabi & Steffen E. Petersen & Julia Ramírez & Alistair Young & Patri, 2024. "Genetic basis of right and left ventricular heart shape," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Ashley Budu-Aggrey & Anna Kilanowski & Maria K. Sobczyk & Suyash S. Shringarpure & Ruth Mitchell & Kadri Reis & Anu Reigo & Reedik Mägi & Mari Nelis & Nao Tanaka & Ben M. Brumpton & Laurent F. Thomas , 2023. "European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Eva-Maria Stauffer & Richard A. I. Bethlehem & Lena Dorfschmidt & Hyejung Won & Varun Warrier & Edward T. Bullmore, 2023. "The genetic relationships between brain structure and schizophrenia," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Rosalie B. T. M. Sterenborg & Inga Steinbrenner & Yong Li & Melissa N. Bujnis & Tatsuhiko Naito & Eirini Marouli & Tessel E. Galesloot & Oladapo Babajide & Laura Andreasen & Arne Astrup & Bjørn Olav Å, 2024. "Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Shahram Bahrami & Kaja Nordengen & Jaroslav Rokicki & Alexey A. Shadrin & Zillur Rahman & Olav B. Smeland & Piotr P. Jaholkowski & Nadine Parker & Pravesh Parekh & Kevin S. O’Connell & Torbjørn Elvsås, 2024. "The genetic landscape of basal ganglia and implications for common brain disorders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Yash Patel & Jean Shin & Eeva Sliz & Ariana Tang & Aniket Mishra & Rui Xia & Edith Hofer & Hema Sekhar Reddy Rajula & Ruiqi Wang & Frauke Beyer & Katrin Horn & Max Riedl & Jing Yu & Henry Völzke & Rob, 2024. "Genetic risk factors underlying white matter hyperintensities and cortical atrophy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Danni A. Gadd & Robert F. Hillary & Daniel L. McCartney & Liu Shi & Aleks Stolicyn & Neil A. Robertson & Rosie M. Walker & Robert I. McGeachan & Archie Campbell & Shen Xueyi & Miruna C. Barbu & Claire, 2022. "Integrated methylome and phenome study of the circulating proteome reveals markers pertinent to brain health," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Fasil Tekola-Ayele & Xuehuo Zeng & Suvo Chatterjee & Marion Ouidir & Corina Lesseur & Ke Hao & Jia Chen & Markos Tesfaye & Carmen J. Marsit & Tsegaselassie Workalemahu & Ronald Wapner, 2022. "Placental multi-omics integration identifies candidate functional genes for birthweight," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Sophie A. Riesmeijer & Zoha Kamali & Michael Ng & Dmitriy Drichel & Bram Piersma & Kerstin Becker & Thomas B. Layton & Jagdeep Nanchahal & Michael Nothnagel & Ahmad Vaez & Hans Christian Hennies & Pau, 2024. "A genome-wide association meta-analysis implicates Hedgehog and Notch signaling in Dupuytren’s disease," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Zhiqiang Sha & Dick Schijven & Amaia Carrion-Castillo & Marc Joliot & Bernard Mazoyer & Simon E. Fisher & Fabrice Crivello & Clyde Francks, 2021. "The genetic architecture of structural left–right asymmetry of the human brain," Nature Human Behaviour, Nature, vol. 5(9), pages 1226-1239, September.
    14. Palwende Romuald Boua & Jean-Tristan Brandenburg & Ananyo Choudhury & Hermann Sorgho & Engelbert A. Nonterah & Godfred Agongo & Gershim Asiki & Lisa Micklesfield & Solomon Choma & Francesc Xavier Góme, 2022. "Genetic associations with carotid intima-media thickness link to atherosclerosis with sex-specific effects in sub-Saharan Africans," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Hung-Lin Chen & Hsiu-Yin Chiang & David Ray Chang & Chi-Fung Cheng & Charles C. N. Wang & Tzu-Pin Lu & Chien-Yueh Lee & Amrita Chattopadhyay & Yu-Ting Lin & Che-Chen Lin & Pei-Tzu Yu & Chien-Fong Huan, 2024. "Discovery and prioritization of genetic determinants of kidney function in 297,355 individuals from Taiwan and Japan," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Molly Went & Laura Duran-Lozano & Gisli H. Halldorsson & Andrea Gunnell & Nerea Ugidos-Damboriena & Philip Law & Ludvig Ekdahl & Amit Sud & Gudmar Thorleifsson & Malte Thodberg & Thorunn Olafsdottir &, 2024. "Deciphering the genetics and mechanisms of predisposition to multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Milton Pividori & Sumei Lu & Binglan Li & Chun Su & Matthew E. Johnson & Wei-Qi Wei & Qiping Feng & Bahram Namjou & Krzysztof Kiryluk & Iftikhar J. Kullo & Yuan Luo & Blair D. Sullivan & Benjamin F. V, 2023. "Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Danielle Rasooly & Gina M. Peloso & Alexandre C. Pereira & Hesam Dashti & Claudia Giambartolomei & Eleanor Wheeler & Nay Aung & Brian R. Ferolito & Maik Pietzner & Eric H. Farber-Eger & Quinn Stanton , 2023. "Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Yu Huang & Denis Plotnikov & Huan Wang & Danli Shi & Cong Li & Xueli Zhang & Xiayin Zhang & Shulin Tang & Xianwen Shang & Yijun Hu & Honghua Yu & Hongyang Zhang & Jeremy A. Guggenheim & Mingguang He, 2024. "GWAS-by-subtraction reveals an IOP-independent component of primary open angle glaucoma," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Abolfazl Doostparast Torshizi & Dongnhu T. Truong & Liping Hou & Bart Smets & Christopher D. Whelan & Shuwei Li, 2024. "Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson’s disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38234-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.