IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13408.html
   My bibliography  Save this article

Long-term coding of personal and universal associations underlying the memory web in the human brain

Author

Listed:
  • Emanuela De Falco

    (Centre for Systems Neuroscience, University of Leicester)

  • Matias J. Ison

    (Centre for Systems Neuroscience, University of Leicester
    University of Leicester
    Present address: School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, UK)

  • Itzhak Fried

    (David Geffen School of Medicine, University of California Los Angeles
    Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles
    Sackler Faculty of Medicine, Tel-Aviv University
    Functional Neurosurgery Unit, Tel-Aviv Medical Center)

  • Rodrigo Quian Quiroga

    (Centre for Systems Neuroscience, University of Leicester
    University of Leicester)

Abstract

Neurons in the medial temporal lobe (MTL), a critical area for declarative memory, have been shown to change their tuning in associative learning tasks. Yet, it is unclear how durable these neuronal representations are and if they outlast the execution of the task. To address this issue, we studied the responses of MTL neurons in neurosurgical patients to known concepts (people and places). Using association scores provided by the patients and a web-based metric, here we show that whenever MTL neurons respond to more than one concept, these concepts are typically related. Furthermore, the degree of association between concepts could be successfully predicted based on the neurons’ response patterns. These results provide evidence for a long-term involvement of MTL neurons in the representation of durable associations, a hallmark of human declarative memory.

Suggested Citation

  • Emanuela De Falco & Matias J. Ison & Itzhak Fried & Rodrigo Quian Quiroga, 2016. "Long-term coding of personal and universal associations underlying the memory web in the human brain," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13408
    DOI: 10.1038/ncomms13408
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13408
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas P. Reber & Sina Mackay & Marcel Bausch & Marcel S. Kehl & Valeri Borger & Rainer Surges & Florian Mormann, 2023. "Single-neuron mechanisms of neural adaptation in the human temporal lobe," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Chiara Gastaldi & Tilo Schwalger & Emanuela De Falco & Rodrigo Quian Quiroga & Wulfram Gerstner, 2021. "When shared concept cells support associations: Theory of overlapping memory engrams," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-44, December.
    3. Marcel Bausch & Johannes Niediek & Thomas P. Reber & Sina Mackay & Jan Boström & Christian E. Elger & Florian Mormann, 2021. "Concept neurons in the human medial temporal lobe flexibly represent abstract relations between concepts," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.