IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030112.html
   My bibliography  Save this article

Slowness: An Objective for Spike-Timing–Dependent Plasticity?

Author

Listed:
  • Henning Sprekeler
  • Christian Michaelis
  • Laurenz Wiskott

Abstract

Our nervous system can efficiently recognize objects in spite of changes in contextual variables such as perspective or lighting conditions. Several lines of research have proposed that this ability for invariant recognition is learned by exploiting the fact that object identities typically vary more slowly in time than contextual variables or noise. Here, we study the question of how this “temporal stability” or “slowness” approach can be implemented within the limits of biologically realistic spike-based learning rules. We first show that slow feature analysis, an algorithm that is based on slowness, can be implemented in linear continuous model neurons by means of a modified Hebbian learning rule. This approach provides a link to the trace rule, which is another implementation of slowness learning. Then, we show analytically that for linear Poisson neurons, slowness learning can be implemented by spike-timing–dependent plasticity (STDP) with a specific learning window. By studying the learning dynamics of STDP, we show that for functional interpretations of STDP, it is not the learning window alone that is relevant but rather the convolution of the learning window with the postsynaptic potential. We then derive STDP learning windows that implement slow feature analysis and the “trace rule.” The resulting learning windows are compatible with physiological data both in shape and timescale. Moreover, our analysis shows that the learning window can be split into two functionally different components that are sensitive to reversible and irreversible aspects of the input statistics, respectively. The theory indicates that irreversible input statistics are not in favor of stable weight distributions but may generate oscillatory weight dynamics. Our analysis offers a novel interpretation for the functional role of STDP in physiological neurons. : Neurons interact by exchanging information via small connection sites, so-called synapses. Interestingly, the efficiency of synapses in transmitting neuronal signals is not static, but changes dynamically depending on the signals that the associated neurons emit. As neurons receive thousands of synaptic input signals, they can thus “choose” the input signals they are interested in by adjusting their synapses accordingly. This adaptation mechanism, known as synaptic plasticity, has long been hypothesized to form the neuronal correlate of learning. It raises a difficult question: what aspects of the input signals are the neurons interested in, given that the adaptation of the synapses follows a certain mechanistic rule? We address this question for spike-timing–dependent plasticity, a type of synaptic plasticity that has raised a lot of interest in the last decade. We show that under certain assumptions regarding neuronal information transmission, spike-timing–dependent plasticity focuses on aspects of the input signals that vary slowly in time. This relates spike-timing–dependent plasticity to a class of abstract learning rules that were previously proposed as a means of learning to recognize objects in spite of contextual changes such as size or position. Based on this link, we propose a novel functional interpretation of spike-timing–dependent plasticity.

Suggested Citation

  • Henning Sprekeler & Christian Michaelis & Laurenz Wiskott, 2007. "Slowness: An Objective for Spike-Timing–Dependent Plasticity?," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-13, June.
  • Handle: RePEc:plo:pcbi00:0030112
    DOI: 10.1371/journal.pcbi.0030112
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030112
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030112&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Quian Quiroga & L. Reddy & G. Kreiman & C. Koch & I. Fried, 2005. "Invariant visual representation by single neurons in the human brain," Nature, Nature, vol. 435(7045), pages 1102-1107, June.
    2. Li I. Zhang & Huizhong W. Tao & Christine E. Holt & William A. Harris & Mu-ming Poo, 1998. "A critical window for cooperation and competition among developing retinotectal synapses," Nature, Nature, vol. 395(6697), pages 37-44, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umut Güçlü & Marcel A J van Gerven, 2014. "Unsupervised Feature Learning Improves Prediction of Human Brain Activity in Response to Natural Images," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-12, August.
    2. Rodrigo Quian Quiroga & Marta Boscaglia & Jacques Jonas & Hernan G. Rey & Xiaoqian Yan & Louis Maillard & Sophie Colnat-Coulbois & Laurent Koessler & Bruno Rossion, 2023. "Single neuron responses underlying face recognition in the human midfusiform face-selective cortex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 307-317.
    4. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    5. Luca D. Kolibius & Frederic Roux & George Parish & Marije Wal & Mircea Plas & Ramesh Chelvarajah & Vijay Sawlani & David T. Rollings & Johannes D. Lang & Stephanie Gollwitzer & Katrin Walther & Rüdige, 2023. "Hippocampal neurons code individual episodic memories in humans," Nature Human Behaviour, Nature, vol. 7(11), pages 1968-1979, November.
    6. Jakub Kopal & Kuldeep Kumar & Kimia Shafighi & Karin Saltoun & Claudia Modenato & Clara A. Moreau & Guillaume Huguet & Martineau Jean-Louis & Charles-Olivier Martin & Zohra Saci & Nadine Younis & Elis, 2024. "Using rare genetic mutations to revisit structural brain asymmetry," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    8. Nanyi Fei & Zhiwu Lu & Yizhao Gao & Guoxing Yang & Yuqi Huo & Jingyuan Wen & Haoyu Lu & Ruihua Song & Xin Gao & Tao Xiang & Hao Sun & Ji-Rong Wen, 2022. "Towards artificial general intelligence via a multimodal foundation model," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Louis Kang & Taro Toyoizumi, 2024. "Distinguishing examples while building concepts in hippocampal and artificial networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. John Palmer & Adam Keane & Pulin Gong, 2017. "Learning and executing goal-directed choices by internally generated sequences in spiking neural circuits," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.
    11. Ahalya Prabhakar & Todd Murphey, 2022. "Mechanical intelligence for learning embodied sensor-object relationships," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Thomas P. Reber & Sina Mackay & Marcel Bausch & Marcel S. Kehl & Valeri Borger & Rainer Surges & Florian Mormann, 2023. "Single-neuron mechanisms of neural adaptation in the human temporal lobe," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Dock H. Duncan & Dirk Moorselaar & Jan Theeuwes, 2023. "Pinging the brain to reveal the hidden attentional priority map using encephalography," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. David Balduzzi & Giulio Tononi, 2009. "Qualia: The Geometry of Integrated Information," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-24, August.
    15. Sina Mackay & Thomas P. Reber & Marcel Bausch & Jan Boström & Christian E. Elger & Florian Mormann, 2024. "Concept and location neurons in the human brain provide the ‘what’ and ‘where’ in memory formation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Jörn Diedrichsen & Nikolaus Kriegeskorte, 2017. "Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-33, April.
    17. Chiara Gastaldi & Tilo Schwalger & Emanuela De Falco & Rodrigo Quian Quiroga & Wulfram Gerstner, 2021. "When shared concept cells support associations: Theory of overlapping memory engrams," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-44, December.
    18. Carlo Baldassi & Alireza Alemi-Neissi & Marino Pagan & James J DiCarlo & Riccardo Zecchina & Davide Zoccolan, 2013. "Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-20, August.
    19. Jongwoon Kim & Hengji Huang & Earl T. Gilbert & Kaiser C. Arndt & Daniel Fine English & Xiaoting Jia, 2024. "T-DOpE probes reveal sensitivity of hippocampal oscillations to cannabinoids in behaving mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Li Shen & Guang-Wei Zhang & Can Tao & Michelle B. Seo & Nicole K. Zhang & Junxiang J. Huang & Li I. Zhang & Huizhong W. Tao, 2022. "A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.