IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37896-w.html
   My bibliography  Save this article

Sequence-structure-function relationships in the microbial protein universe

Author

Listed:
  • Julia Koehler Leman

    (Flatiron Institute, Simons Foundation
    New York University)

  • Pawel Szczerbiak

    (Jagiellonian University)

  • P. Douglas Renfrew

    (Flatiron Institute, Simons Foundation
    New York University)

  • Vladimir Gligorijevic

    (Flatiron Institute, Simons Foundation
    Prescient Design, a Genentech accelerator)

  • Daniel Berenberg

    (Flatiron Institute, Simons Foundation
    Prescient Design, a Genentech accelerator
    New York University
    New York University)

  • Tommi Vatanen

    (Broad Institute
    University of Auckland
    Faculty of Medicine, 00014 University of Helsinki)

  • Bryn C. Taylor

    (University of California San Diego
    Janssen Research and Development)

  • Chris Chandler

    (Flatiron Institute, Simons Foundation)

  • Stefan Janssen

    (University of California, San Diego
    Justus Liebig University Giessen)

  • Andras Pataki

    (Flatiron Institute, Simons Foundation)

  • Nick Carriero

    (Flatiron Institute, Simons Foundation)

  • Ian Fisk

    (Flatiron Institute, Simons Foundation)

  • Ramnik J. Xavier

    (Broad Institute
    MIT)

  • Rob Knight

    (University of California San Diego
    University of California, San Diego
    University of California San Diego
    University of California)

  • Richard Bonneau

    (Flatiron Institute, Simons Foundation
    New York University
    New York University
    New York University)

  • Tomasz Kosciolek

    (Jagiellonian University)

Abstract

For the past half-century, structural biologists relied on the notion that similar protein sequences give rise to similar structures and functions. While this assumption has driven research to explore certain parts of the protein universe, it disregards spaces that don’t rely on this assumption. Here we explore areas of the protein universe where similar protein functions can be achieved by different sequences and different structures. We predict ~200,000 structures for diverse protein sequences from 1,003 representative genomes across the microbial tree of life and annotate them functionally on a per-residue basis. Structure prediction is accomplished using the World Community Grid, a large-scale citizen science initiative. The resulting database of structural models is complementary to the AlphaFold database, with regards to domains of life as well as sequence diversity and sequence length. We identify 148 novel folds and describe examples where we map specific functions to structural motifs. We also show that the structural space is continuous and largely saturated, highlighting the need for a shift in focus across all branches of biology, from obtaining structures to putting them into context and from sequence-based to sequence-structure-function based meta-omics analyses.

Suggested Citation

  • Julia Koehler Leman & Pawel Szczerbiak & P. Douglas Renfrew & Vladimir Gligorijevic & Daniel Berenberg & Tommi Vatanen & Bryn C. Taylor & Chris Chandler & Stefan Janssen & Andras Pataki & Nick Carrier, 2023. "Sequence-structure-function relationships in the microbial protein universe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37896-w
    DOI: 10.1038/s41467-023-37896-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37896-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37896-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Joe G. Greener & Shaun M. Kandathil & David T. Jones, 2019. "Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. Martin Steinegger & Johannes Söding, 2018. "Clustering huge protein sequence sets in linear time," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Yibei Xiao & Sherwin Ng & Ki Hyun Nam & Ailong Ke, 2017. "How type II CRISPR–Cas establish immunity through Cas1–Cas2-mediated spacer integration," Nature, Nature, vol. 550(7674), pages 137-141, October.
    5. Vladimir Gligorijević & P. Douglas Renfrew & Tomasz Kosciolek & Julia Koehler Leman & Daniel Berenberg & Tommi Vatanen & Chris Chandler & Bryn C. Taylor & Ian M. Fisk & Hera Vlamakis & Ramnik J. Xavie, 2021. "Structure-based protein function prediction using graph convolutional networks," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefanie Duller & Simone Vrbancic & Łukasz Szydłowski & Alexander Mahnert & Marcus Blohs & Michael Predl & Christina Kumpitsch & Verena Zrim & Christoph Högenauer & Tomasz Kosciolek & Ruth A. Schmitz , 2024. "Targeted isolation of Methanobrevibacter strains from fecal samples expands the cultivated human archaeome," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziqi Gao & Chenran Jiang & Jiawen Zhang & Xiaosen Jiang & Lanqing Li & Peilin Zhao & Huanming Yang & Yong Huang & Jia Li, 2023. "Hierarchical graph learning for protein–protein interaction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Stefanie Duller & Simone Vrbancic & Łukasz Szydłowski & Alexander Mahnert & Marcus Blohs & Michael Predl & Christina Kumpitsch & Verena Zrim & Christoph Högenauer & Tomasz Kosciolek & Ruth A. Schmitz , 2024. "Targeted isolation of Methanobrevibacter strains from fecal samples expands the cultivated human archaeome," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. David Moi & Shunsuke Nishio & Xiaohui Li & Clari Valansi & Mauricio Langleib & Nicolas G. Brukman & Kateryna Flyak & Christophe Dessimoz & Daniele de Sanctis & Kathryn Tunyasuvunakool & John Jumper & , 2022. "Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Ivan Koludarov & Tobias Senoner & Timothy N. W. Jackson & Daniel Dashevsky & Michael Heinzinger & Steven D. Aird & Burkhard Rost, 2023. "Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Junhui Peng & Li Zhao, 2024. "The origin and structural evolution of de novo genes in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Marco Malatesta & Emanuele Fornasier & Martino Luigi Salvo & Angela Tramonti & Erika Zangelmi & Alessio Peracchi & Andrea Secchi & Eugenia Polverini & Gabriele Giachin & Roberto Battistutta & Roberto , 2024. "One substrate many enzymes virtual screening uncovers missing genes of carnitine biosynthesis in human and mouse," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    12. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37896-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.