IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38002-w.html
   My bibliography  Save this article

Epigenetic landscape reveals MECOM as an endothelial lineage regulator

Author

Listed:
  • Jie Lv

    (Houston Methodist Research Institute)

  • Shu Meng

    (Houston Methodist Research Institute)

  • Qilin Gu

    (Houston Methodist Research Institute)

  • Rongbin Zheng

    (Boston Children’s Hospital
    Harvard Medical School)

  • Xinlei Gao

    (Houston Methodist Research Institute
    Houston Methodist Research Institute
    Boston Children’s Hospital
    Harvard Medical School)

  • Jun-dae Kim

    (Houston Methodist Research Institute)

  • Min Chen

    (Boston Children’s Hospital
    Harvard Medical School)

  • Bo Xia

    (Houston Methodist Research Institute)

  • Yihan Zuo

    (Boston Children’s Hospital
    Harvard Medical School)

  • Sen Zhu

    (Houston Methodist Research Institute)

  • Dongyu Zhao

    (Houston Methodist Research Institute
    Houston Methodist Research Institute
    Boston Children’s Hospital
    Harvard Medical School)

  • Yanqiang Li

    (Houston Methodist Research Institute
    Houston Methodist Research Institute
    Boston Children’s Hospital
    Harvard Medical School)

  • Guangyu Wang

    (Houston Methodist Research Institute
    Houston Methodist Research Institute
    Boston Children’s Hospital
    Harvard Medical School)

  • Xin Wang

    (Houston Methodist Research Institute
    Houston Methodist Research Institute
    Boston Children’s Hospital
    Harvard Medical School)

  • Qingshu Meng

    (Northwestern University Feinberg School of Medicine
    Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine)

  • Qi Cao

    (Northwestern University Feinberg School of Medicine
    Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine)

  • John P. Cooke

    (Houston Methodist Research Institute)

  • Longhou Fang

    (Houston Methodist Research Institute)

  • Kaifu Chen

    (Houston Methodist Research Institute
    Houston Methodist Research Institute
    Boston Children’s Hospital
    Harvard Medical School)

  • Lili Zhang

    (Houston Methodist Research Institute
    Boston Children’s Hospital
    Harvard Medical School)

Abstract

A comprehensive understanding of endothelial cell lineage specification will advance cardiovascular regenerative medicine. Recent studies found that unique epigenetic signatures preferentially regulate cell identity genes. We thus systematically investigate the epigenetic landscape of endothelial cell lineage and identify MECOM to be the leading candidate as an endothelial cell lineage regulator. Single-cell RNA-Seq analysis verifies that MECOM-positive cells are exclusively enriched in the cell cluster of bona fide endothelial cells derived from induced pluripotent stem cells. Our experiments demonstrate that MECOM depletion impairs human endothelial cell differentiation, functions, and Zebrafish angiogenesis. Through integrative analysis of Hi-C, DNase-Seq, ChIP-Seq, and RNA-Seq data, we find MECOM binds enhancers that form chromatin loops to regulate endothelial cell identity genes. Further, we identify and verify the VEGF signaling pathway to be a key target of MECOM. Our work provides important insights into epigenetic regulation of cell identity and uncovered MECOM as an endothelial cell lineage regulator.

Suggested Citation

  • Jie Lv & Shu Meng & Qilin Gu & Rongbin Zheng & Xinlei Gao & Jun-dae Kim & Min Chen & Bo Xia & Yihan Zuo & Sen Zhu & Dongyu Zhao & Yanqiang Li & Guangyu Wang & Xin Wang & Qingshu Meng & Qi Cao & John P, 2023. "Epigenetic landscape reveals MECOM as an endothelial lineage regulator," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38002-w
    DOI: 10.1038/s41467-023-38002-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38002-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38002-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason Ernst & Pouya Kheradpour & Tarjei S. Mikkelsen & Noam Shoresh & Lucas D. Ward & Charles B. Epstein & Xiaolan Zhang & Li Wang & Robbyn Issner & Michael Coyne & Manching Ku & Timothy Durham & Mano, 2011. "Mapping and analysis of chromatin state dynamics in nine human cell types," Nature, Nature, vol. 473(7345), pages 43-49, May.
    2. Bo Xia & Dongyu Zhao & Guangyu Wang & Min Zhang & Jie Lv & Alin S. Tomoiaga & Yanqiang Li & Xin Wang & Shu Meng & John P. Cooke & Qi Cao & Lili Zhang & Kaifu Chen, 2020. "Machine learning uncovers cell identity regulator by histone code," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Elisabetta Dejana & Karen K. Hirschi & Michael Simons, 2017. "The molecular basis of endothelial cell plasticity," Nature Communications, Nature, vol. 8(1), pages 1-11, April.
    4. Robert E. Thurman & Eric Rynes & Richard Humbert & Jeff Vierstra & Matthew T. Maurano & Eric Haugen & Nathan C. Sheffield & Andrew B. Stergachis & Hao Wang & Benjamin Vernot & Kavita Garg & Sam John &, 2012. "The accessible chromatin landscape of the human genome," Nature, Nature, vol. 489(7414), pages 75-82, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang-Yu Fu & Tao Zhu & Xinkai Zhou & Ranran Yu & Zhaohui He & Peijing Zhang & Zhigui Wu & Ming Chen & Kerstin Kaufmann & Dijun Chen, 2022. "ChIP-Hub provides an integrative platform for exploring plant regulome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Marie Bobowski-Gerard & Clémence Boulet & Francesco P. Zummo & Julie Dubois-Chevalier & Céline Gheeraert & Mohamed Bou Saleh & Jean-Marc Strub & Amaury Farce & Maheul Ploton & Loïc Guille & Jimmy Vand, 2022. "Functional genomics uncovers the transcription factor BNC2 as required for myofibroblastic activation in fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Xuelong Yao & Zongyang Lu & Zhanying Feng & Lei Gao & Xin Zhou & Min Li & Suijuan Zhong & Qian Wu & Zhenbo Liu & Haofeng Zhang & Zeyuan Liu & Lizhi Yi & Tao Zhou & Xudong Zhao & Jun Zhang & Yong Wang , 2022. "Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Seungsoo Hahn & Dongsup Kim, 2015. "Identifying and Reducing Systematic Errors in Chromosome Conformation Capture Data," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    5. Ye Cai & Huifen Cao & Fang Wang & Yufei Zhang & Philipp Kapranov, 2022. "Complex genomic patterns of abasic sites in mammalian DNA revealed by a high-resolution SSiNGLe-AP method," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    6. Chirag Nepal & Jesper B. Andersen, 2023. "Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Haoxi Chai & Harianto Tjong & Peng Li & Wei Liao & Ping Wang & Chee Hong Wong & Chew Yee Ngan & Warren J. Leonard & Chia-Lin Wei & Yijun Ruan, 2023. "ChIATAC is an efficient strategy for multi-omics mapping of 3D epigenomes from low-cell inputs," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Zhangyuan Pan & Yuelin Yao & Hongwei Yin & Zexi Cai & Ying Wang & Lijing Bai & Colin Kern & Michelle Halstead & Ganrea Chanthavixay & Nares Trakooljul & Klaus Wimmers & Goutam Sahana & Guosheng Su & M, 2021. "Pig genome functional annotation enhances the biological interpretation of complex traits and human disease," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    9. Maurizio Mangolini & Alba Maiques-Diaz & Stella Charalampopoulou & Elena Gerhard-Hartmann & Johannes Bloehdorn & Andrew Moore & Giorgia Giachetti & Junyan Lu & Valar Nila Roamio Franklin & Chandra Sek, 2022. "Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    10. Carlos Rivera & Hun-Goo Lee & Anna Lappala & Danni Wang & Verónica Noches & Montserrat Olivares-Costa & Marcela Sjöberg-Herrera & Jeannie T. Lee & María Estela Andrés, 2022. "Unveiling RCOR1 as a rheostat at transcriptionally permissive chromatin," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Noah Dukler & Mehreen R. Mughal & Ritika Ramani & Yi-Fei Huang & Adam Siepel, 2022. "Extreme purifying selection against point mutations in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Ting Shen & Ting Ni & Jiaxuan Chen & Haitao Chen & Xiaopin Ma & Guangwen Cao & Tianzhi Wu & Haisheng Xie & Bin Zhou & Gang Wei & Hexige Saiyin & Suqin Shen & Peng Yu & Qianyi Xiao & Hui Liu & Yuzheng , 2022. "An enhancer variant at 16q22.1 predisposes to hepatocellular carcinoma via regulating PRMT7 expression," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Julia Truch & Damien J. Downes & Caroline Scott & E. Ravza Gür & Jelena M. Telenius & Emmanouela Repapi & Ron Schwessinger & Matthew Gosden & Jill M. Brown & Stephen Taylor & Pak Leng Cheong & Jim R. , 2022. "The chromatin remodeller ATRX facilitates diverse nuclear processes, in a stochastic manner, in both heterochromatin and euchromatin," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Siqian Feng & Chaitanya Rastogi & Ryan Loker & William J. Glassford & H. Tomas Rube & Harmen J. Bussemaker & Richard S. Mann, 2022. "Transcription factor paralogs orchestrate alternative gene regulatory networks by context-dependent cooperation with multiple cofactors," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Rachel K. Lex & Weiqiang Zhou & Zhicheng Ji & Kristin N. Falkenstein & Kaleigh E. Schuler & Kathryn E. Windsor & Joseph D. Kim & Hongkai Ji & Steven A. Vokes, 2022. "GLI transcriptional repression is inert prior to Hedgehog pathway activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Grigorios Georgolopoulos & Nikoletta Psatha & Mineo Iwata & Andrew Nishida & Tannishtha Som & Minas Yiangou & John A. Stamatoyannopoulos & Jeff Vierstra, 2021. "Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    17. Nikolai Schleussner & Pierre Cauchy & Vedran Franke & Maciej Giefing & Oriol Fornes & Naveen Vankadari & Salam A. Assi & Mariantonia Costanza & Marc A. Weniger & Altuna Akalin & Ioannis Anagnostopoulo, 2023. "Transcriptional reprogramming by mutated IRF4 in lymphoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Hillary Koch & Cheryl A. Keller & Guanjue Xiang & Belinda Giardine & Feipeng Zhang & Yicheng Wang & Ross C. Hardison & Qunhua Li, 2022. "CLIMB: High-dimensional association detection in large scale genomic data," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Fei Wang & Peiwen Ding & Xue Liang & Xiangning Ding & Camilla Blunk Brandt & Evelina Sjöstedt & Jiacheng Zhu & Saga Bolund & Lijing Zhang & Laura P. M. H. Rooij & Lihua Luo & Yanan Wei & Wandong Zhao , 2022. "Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Alan Selewa & Kaixuan Luo & Michael Wasney & Linsin Smith & Xiaotong Sun & Chenwei Tang & Heather Eckart & Ivan P. Moskowitz & Anindita Basu & Xin He & Sebastian Pott, 2023. "Single-cell genomics improves the discovery of risk variants and genes of atrial fibrillation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38002-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.