IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37759-4.html
   My bibliography  Save this article

Anaerobic thiosulfate oxidation by the Roseobacter group is prevalent in marine biofilms

Author

Listed:
  • Wei Ding

    (Ocean University of China
    The University of Hong Kong)

  • Shougang Wang

    (Ocean University of China)

  • Peng Qin

    (Ocean University of China)

  • Shen Fan

    (Ocean University of China)

  • Xiaoyan Su

    (Ocean University of China)

  • Peiyan Cai

    (The University of Hong Kong)

  • Jie Lu

    (Ocean University of China)

  • Han Cui

    (Ocean University of China)

  • Meng Wang

    (Ocean University of China)

  • Yi Shu

    (Ocean University of China)

  • Yongming Wang

    (Ocean University of China)

  • Hui-Hui Fu

    (Ocean University of China)

  • Yu-Zhong Zhang

    (Ocean University of China
    Shandong University)

  • Yong-Xin Li

    (The University of Hong Kong
    Southern Marine Science and Engineering Guangdong Laboratory)

  • Weipeng Zhang

    (Ocean University of China)

Abstract

Thiosulfate oxidation by microbes has a major impact on global sulfur cycling. Here, we provide evidence that bacteria within various Roseobacter lineages are important for thiosulfate oxidation in marine biofilms. We isolate and sequence the genomes of 54 biofilm-associated Roseobacter strains, finding conserved sox gene clusters for thiosulfate oxidation and plasmids, pointing to a niche-specific lifestyle. Analysis of global ocean metagenomic data suggests that Roseobacter strains are abundant in biofilms and mats on various substrates, including stones, artificial surfaces, plant roots, and hydrothermal vent chimneys. Metatranscriptomic analysis indicates that the majority of active sox genes in biofilms belong to Roseobacter strains. Furthermore, we show that Roseobacter strains can grow and oxidize thiosulfate to sulfate under both aerobic and anaerobic conditions. Transcriptomic and membrane proteomic analyses of biofilms formed by a representative strain indicate that thiosulfate induces sox gene expression and alterations in cell membrane protein composition, and promotes biofilm formation and anaerobic respiration. We propose that bacteria of the Roseobacter group are major thiosulfate-oxidizers in marine biofilms, where anaerobic thiosulfate metabolism is preferred.

Suggested Citation

  • Wei Ding & Shougang Wang & Peng Qin & Shen Fan & Xiaoyan Su & Peiyan Cai & Jie Lu & Han Cui & Meng Wang & Yi Shu & Yongming Wang & Hui-Hui Fu & Yu-Zhong Zhang & Yong-Xin Li & Weipeng Zhang, 2023. "Anaerobic thiosulfate oxidation by the Roseobacter group is prevalent in marine biofilms," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37759-4
    DOI: 10.1038/s41467-023-37759-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37759-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37759-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chirag Jain & Luis M. Rodriguez-R & Adam M. Phillippy & Konstantinos T. Konstantinidis & Srinivas Aluru, 2018. "High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Mary Ann Moran & Alison Buchan & José M. González & John F. Heidelberg & William B. Whitman & Ronald P. Kiene & James R. Henriksen & Gary M. King & Robert Belas & Clay Fuqua & Lauren Brinkac & Matt Le, 2004. "Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment," Nature, Nature, vol. 432(7019), pages 910-913, December.
    3. Peter Menzel & Kim Lee Ng & Anders Krogh, 2016. "Fast and sensitive taxonomic classification for metagenomics with Kaiju," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    4. Weipeng Zhang & Wei Ding & Yong-Xin Li & Chunkit Tam & Salim Bougouffa & Ruojun Wang & Bite Pei & Hoyin Chiang & Pokman Leung & Yanhong Lu & Jin Sun & He Fu & Vladimir B Bajic & Hongbin Liu & Nicole S, 2019. "Marine biofilms constitute a bank of hidden microbial diversity and functional potential," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Ravi K Patel & Mukesh Jain, 2012. "NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-7, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harold P. Hodgins & Pengsheng Chen & Briallen Lobb & Xin Wei & Benjamin J. M. Tremblay & Michael J. Mansfield & Victoria C. Y. Lee & Pyung-Gang Lee & Jeffrey Coffin & Ana T. Duggan & Alexis E. Dolphin, 2023. "Ancient Clostridium DNA and variants of tetanus neurotoxins associated with human archaeological remains," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Amanda Sörensen Ristinmaa & Albert Tafur Rangel & Alexander Idström & Sebastian Valenzuela & Eduard J. Kerkhoven & Phillip B. Pope & Merima Hasani & Johan Larsbrink, 2023. "Resin acids play key roles in shaping microbial communities during degradation of spruce bark," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. M. C. Rühlemann & C. Bang & J. F. Gogarten & B. M. Hermes & M. Groussin & S. Waschina & M. Poyet & M. Ulrich & C. Akoua-Koffi & T. Deschner & J. J. Muyembe-Tamfum & M. M. Robbins & M. Surbeck & R. M. , 2024. "Functional host-specific adaptation of the intestinal microbiome in hominids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Lucas Serra Moncadas & Cyrill Hofer & Paul-Adrian Bulzu & Jakob Pernthaler & Adrian-Stefan Andrei, 2024. "Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Ling Zhong & Menghan Zhang & Libing Sun & Yu Yang & Bo Wang & Haibing Yang & Qiang Shen & Yu Xia & Jiarui Cui & Hui Hang & Yi Ren & Bo Pang & Xiangyu Deng & Yahui Zhan & Heng Li & Zhemin Zhou, 2023. "Distributed genotyping and clustering of Neisseria strains reveal continual emergence of epidemic meningococcus over a century," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Aleksandar Stanojković & Svatopluk Skoupý & Hanna Johannesson & Petr Dvořák, 2024. "The global speciation continuum of the cyanobacterium Microcoleus," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Xin Fan & Rong-Chen Dai & Shu Zhang & Yuan-Yuan Geng & Mei Kang & Da-Wen Guo & Ya-Ning Mei & Yu-Hong Pan & Zi-Yong Sun & Ying-Chun Xu & Jie Gong & Meng Xiao, 2023. "Tandem gene duplications contributed to high-level azole resistance in a rapidly expanding Candida tropicalis population," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Lucie Semenec & Amy K. Cain & Catherine J. Dawson & Qi Liu & Hue Dinh & Hannah Lott & Anahit Penesyan & Ram Maharjan & Francesca L. Short & Karl A. Hassan & Ian T. Paulsen, 2023. "Cross-protection and cross-feeding between Klebsiella pneumoniae and Acinetobacter baumannii promotes their co-existence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Corentin Hochart & Lucas Paoli & Hans-Joachim Ruscheweyh & Guillem Salazar & Emilie Boissin & Sarah Romac & Julie Poulain & Guillaume Bourdin & Guillaume Iwankow & Clémentine Moulin & Maren Ziegler & , 2023. "Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Daniel P. Morreale & Eric A. Porsch & Brad K. Kern & Joseph W. Geme & Paul J. Planet, 2023. "Acquisition, co-option, and duplication of the rtx toxin system and the emergence of virulence in Kingella," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Lharbi Dridi & Fernando Altamura & Emmanuel Gonzalez & Olivia Lui & Ryszard Kubinski & Reilly Pidgeon & Adrian Montagut & Jasmine Chong & Jianguo Xia & Corinne F. Maurice & Bastien Castagner, 2023. "Identifying glycan consumers in human gut microbiota samples using metabolic labeling coupled with fluorescence-activated cell sorting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Xiyang Dong & Yongyi Peng & Muhua Wang & Laura Woods & Wenxue Wu & Yong Wang & Xi Xiao & Jiwei Li & Kuntong Jia & Chris Greening & Zongze Shao & Casey R. J. Hubert, 2023. "Evolutionary ecology of microbial populations inhabiting deep sea sediments associated with cold seeps," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Xuanji Li & Asker Brejnrod & Jonathan Thorsen & Trine Zachariasen & Urvish Trivedi & Jakob Russel & Gisle Alberg Vestergaard & Jakob Stokholm & Morten Arendt Rasmussen & Søren Johannes Sørensen, 2023. "Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Zheng Sun & Jiang Liu & Meng Zhang & Tong Wang & Shi Huang & Scott T. Weiss & Yang-Yu Liu, 2023. "Removal of false positives in metagenomics-based taxonomy profiling via targeting Type IIB restriction sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Marc Schoeler & Sandrine Ellero-Simatos & Till Birkner & Jordi Mayneris-Perxachs & Lisa Olsson & Harald Brolin & Ulrike Loeber & Jamie D. Kraft & Arnaud Polizzi & Marian Martí-Navas & Josep Puig & Ant, 2023. "The interplay between dietary fatty acids and gut microbiota influences host metabolism and hepatic steatosis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Sanjam S. Sawhney & Rhiannon C. Vargas & Meghan A. Wallace & Carol E. Muenks & Brian V. Lubbers & Stephanie A. Fritz & Carey-Ann D. Burnham & Gautam Dantas, 2023. "Diagnostic and commensal Staphylococcus pseudintermedius genomes reveal niche adaptation through parallel selection of defense mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Cong Wang & Qing-Yi Yu & Niu-Niu Ji & Yong Zheng & John W. Taylor & Liang-Dong Guo & Cheng Gao, 2023. "Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Conor Feehily & Ian J. O’Neill & Calum J. Walsh & Rebecca L. Moore & Sarah Louise Killeen & Aisling A. Geraghty & Elaine M. Lawton & David Byrne & Rocio Sanchez-Gallardo & Sai Ravi Chandra Nori & Ida , 2023. "Detailed mapping of Bifidobacterium strain transmission from mother to infant via a dual culture-based and metagenomic approach," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Pingfen Zhu & Weiqiang Liu & Xiaoxiao Zhang & Meng Li & Gaoming Liu & Yang Yu & Zihao Li & Xuanjing Li & Juan Du & Xiao Wang & Cyril C. Grueter & Ming Li & Xuming Zhou, 2023. "Correlated evolution of social organization and lifespan in mammals," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Yuval Bussi & Ruti Kapon & Ziv Reich, 2021. "Large-scale k-mer-based analysis of the informational properties of genomes, comparative genomics and taxonomy," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-27, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37759-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.