IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12223-4.html
   My bibliography  Save this article

Highly selective detection of methanol over ethanol by a handheld gas sensor

Author

Listed:
  • J. Broek

    (ETH Zurich)

  • S. Abegg

    (ETH Zurich)

  • S. E. Pratsinis

    (ETH Zurich)

  • A. T. Güntner

    (ETH Zurich
    University Hospital Zurich)

Abstract

Methanol poisoning causes blindness, organ failure or even death when recognized too late. Currently, there is no methanol detector for quick diagnosis by breath analysis or for screening of laced beverages. Typically, chemical sensors cannot distinguish methanol from the much higher ethanol background. Here, we present an inexpensive and handheld sensor for highly selective methanol detection. It consists of a separation column (Tenax) separating methanol from interferants like ethanol, acetone or hydrogen, as in gas chromatography, and a chemoresistive gas sensor (Pd-doped SnO2 nanoparticles) to quantify the methanol concentration. This way, methanol is measured within 2 min from 1 to 1000 ppm without interference of much higher ethanol levels (up to 62,000 ppm). As a proof-of-concept, we reliably measure methanol concentrations in spiked breath samples and liquor. This could enable the realization of highly selective sensors in emerging applications such as breath analysis or air quality monitoring.

Suggested Citation

  • J. Broek & S. Abegg & S. E. Pratsinis & A. T. Güntner, 2019. "Highly selective detection of methanol over ethanol by a handheld gas sensor," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12223-4
    DOI: 10.1038/s41467-019-12223-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12223-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12223-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayu Li & Wenzhe Si & Lei Shi & Ruiqin Gao & Qiuju Li & Wei An & Zicheng Zhao & Lu Zhang & Ni Bai & Xiaoxin Zou & Guo-Dong Li, 2024. "Essential role of lattice oxygen in hydrogen sensing reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yiming Liu & Chun Ki Yiu & Zhao Zhao & Wooyoung Park & Rui Shi & Xingcan Huang & Yuyang Zeng & Kuan Wang & Tsz Hung Wong & Shengxin Jia & Jingkun Zhou & Zhan Gao & Ling Zhao & Kuanming Yao & Jian Li &, 2023. "Soft, miniaturized, wireless olfactory interface for virtual reality," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Hong Zhang & Zuobin Zhang & Zhou Li & Hongjie Han & Weiguo Song & Jianxin Yi, 2023. "A chemiresistive-potentiometric multivariate sensor for discriminative gas detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Wen Lv & Jianhua Yang & Qingda Xu & Jaafar Abdul-Aziz Mehrez & Jia Shi & Wenjing Quan & Hanyu Luo & Min Zeng & Nantao Hu & Tao Wang & Hao Wei & Zhi Yang, 2024. "Wide-range and high-accuracy wireless sensor with self-humidity compensation for real-time ammonia monitoring," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12223-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.