IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37157-w.html
   My bibliography  Save this article

Observation of Chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer

Author

Listed:
  • Biao Chen

    (University of Science and Technology of China)

  • Wenhuan Huang

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Guoqing Zhang

    (University of Science and Technology of China
    University of Science and Technology of China)

Abstract

Pure organic room-temperature phosphorescence (RTP), particularly from guest-host doped systems, has seen exponential growth in the last several years due to their high modulation flexibility, and yet challenges remain with respect to mechanistic elucidations and advantageous applications. Here we show that by constructing guest-host doped RTP systems from chiral components, namely, chiral amino compound-modified phthalimide hosts and naphthalimide guests, a chiral-selective RTP enhancement phenomenon can be observed. For example, R-enantiomeric guests in R-enantiomeric hosts produce strong red RTP afterglow while no appreciable RTP could be observed in the S-R guest-host counterpart. An unprecedented RTP intensity difference > 102 folds with the ability to distinguish an enantiomeric excess of 98% could be achieved. Temperature-dependent measurements suggest that a chirality-dependent energy transfer process may be involved in the observed phenomenon, which can be harnessed to extend the RTP application to the chiral recognition of amino compounds, such as amino alcohols.

Suggested Citation

  • Biao Chen & Wenhuan Huang & Guoqing Zhang, 2023. "Observation of Chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37157-w
    DOI: 10.1038/s41467-023-37157-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37157-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37157-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xuepeng Zhang & Lili Du & Weijun Zhao & Zheng Zhao & Yu Xiong & Xuewen He & Peng Fei Gao & Parvej Alam & Can Wang & Zhen Li & Jing Leng & Junxue Liu & Chuanyao Zhou & Jacky W. Y. Lam & David Lee Phill, 2019. "Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Xiugang Wu & Chun-Ying Huang & Deng-Gao Chen & Denghui Liu & Chichi Wu & Keh-Jiunh Chou & Bin Zhang & Yafei Wang & Yu Liu & Elise Y. Li & Weiguo Zhu & Pi-Tai Chou, 2020. "Exploiting racemism enhanced organic room-temperature phosphorescence to demonstrate Wallach’s rule in the lighting chiral chromophores," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Ryota Kabe & Chihaya Adachi, 2017. "Organic long persistent luminescence," Nature, Nature, vol. 550(7676), pages 384-387, October.
    4. Shi-Liang Shi & Zackary L. Wong & Stephen L. Buchwald, 2016. "Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols," Nature, Nature, vol. 532(7599), pages 353-356, April.
    5. Kenry & Chengjian Chen & Bin Liu, 2019. "Enhancing the performance of pure organic room-temperature phosphorescent luminophores," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyu Chen & Renlong Zhu & Baicheng Zhang & Xiaolong Zhang & Aoyuan Cheng & Hongping Liu & Ruiying Gao & Xuepeng Zhang & Biao Chen & Shuji Ye & Jun Jiang & Guoqing Zhang, 2024. "Rapid room-temperature phosphorescence chiral recognition of natural amino acids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Mingjian Zeng & Weiguang Wang & Shuman Zhang & Zhisheng Gao & Yingmeng Yan & Yitong Liu & Yulong Qi & Xin Yan & Wei Zhao & Xin Zhang & Ningning Guo & Huanhuan Li & Hui Li & Gaozhan Xie & Ye Tao & Runf, 2024. "Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiwei Xie & Wenbin Huang & Jietai Li & Zikai He & Guangxi Huang & Bing Shi Li & Ben Zhong Tang, 2023. "Anti-Kasha triplet energy transfer and excitation wavelength dependent persistent luminescence from host-guest doping systems," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Zongliang Xie & Yufeng Xue & Xianhe Zhang & Junru Chen & Zesen Lin & Bin Liu, 2024. "Isostructural doping for organic persistent mechanoluminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Guang Lu & Jing Tan & Hongxiang Wang & Yi Man & Shuo Chen & Jing Zhang & Chunbo Duan & Chunmiao Han & Hui Xu, 2024. "Delayed room temperature phosphorescence enabled by phosphines," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Xing Wang Liu & Weijun Zhao & Yue Wu & Zhengong Meng & Zikai He & Xin Qi & Yiran Ren & Zhen-Qiang Yu & Ben Zhong Tang, 2022. "Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Lulin Xu & Yuhang Mo & Ning Su & Changshen Shi & Ning Sun & Yuewei Zhang & Lian Duan & Zheng-Hong Lu & Junqiao Ding, 2023. "D-O-A based organic phosphors for both aggregation-induced electrophosphorescence and host-free sensitization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Xiaoyu Chen & Renlong Zhu & Baicheng Zhang & Xiaolong Zhang & Aoyuan Cheng & Hongping Liu & Ruiying Gao & Xuepeng Zhang & Biao Chen & Shuji Ye & Jun Jiang & Guoqing Zhang, 2024. "Rapid room-temperature phosphorescence chiral recognition of natural amino acids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Rongjuan Huang & Yunfei He & Juan Wang & Jindou Zou & Hailan Wang & Haodong Sun & Yuxin Xiao & Dexin Zheng & Jiani Ma & Tao Yu & Wei Huang, 2024. "Tunable afterglow for mechanical self-monitoring 3D printing structures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Xiaokang Yao & Huili Ma & Xiao Wang & He Wang & Qian Wang & Xin Zou & Zhicheng Song & Wenyong Jia & Yuxin Li & Yufeng Mao & Manjeet Singh & Wenpeng Ye & Jian Liang & Yanyun Zhang & Zhuang Liu & Yixiao, 2022. "Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Juan Wei & Mingye Zhu & Tingchen Du & Jangang Li & Peiling Dai & Chenyuan Liu & Jiayu Duan & Shujuan Liu & Xingcheng Zhou & Sudi Zhang & Luo Guo & Hao Wang & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Full-color persistent room temperature phosphorescent elastomers with robust optical properties," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Tianwen Zhu & Tianjia Yang & Qiang Zhang & Wang Zhang Yuan, 2022. "Clustering and halogen effects enabled red/near-infrared room temperature phosphorescence from aliphatic cyclic imides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Wenxiang Wang & Shanwen Wang & Yan Gu & Jinyu Zhou & Jiachi Zhang, 2024. "Contact-separation-induced self-recoverable mechanoluminescence of CaF2:Tb3+/PDMS elastomer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Yanju Luo & Kai Zhang & Zhenming Ding & Ping Chen & Xiaomei Peng & Yihuan Zhao & Kuan Chen & Chuan Li & Xujun Zheng & Yan Huang & Xuemei Pu & Yu Liu & Shi-Jian Su & Xiandeng Hou & Zhiyun Lu, 2022. "Ultra-fast triplet-triplet-annihilation-mediated high-lying reverse intersystem crossing triggered by participation of nπ*-featured excited states," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Danman Guo & Wen Wang & Kaimin Zhang & Jinzheng Chen & Yuyuan Wang & Tianyi Wang & Wangmeng Hou & Zhen Zhang & Huahua Huang & Zhenguo Chi & Zhiyong Yang, 2024. "Visible-light-excited robust room-temperature phosphorescence of dimeric single-component luminophores in the amorphous state," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Juan Wei & Chenyuan Liu & Jiayu Duan & Aiwen Shao & Jinlu Li & Jiangang Li & Wenjie Gu & Zixian Li & Shujuan Liu & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Debasish Barman & Mari Annadhasan & Anil Parsram Bidkar & Pachaiyappan Rajamalli & Debika Barman & Siddhartha Sankar Ghosh & Rajadurai Chandrasekar & Parameswar Krishnan Iyer, 2023. "Highly efficient color-tunable organic co-crystals unveiling polymorphism, isomerism, delayed fluorescence for optical waveguides and cell-imaging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Jiuyang Li & Xun Li & Guangming Wang & Xuepu Wang & Minjian Wu & Jiahui Liu & Kaka Zhang, 2023. "A direct observation of up-converted room-temperature phosphorescence in an anti-Kasha dopant-matrix system," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Liang Gao & Jiayue Huang & Lunjun Qu & Xiaohong Chen & Ying Zhu & Chen Li & Quanchi Tian & Yanli Zhao & Chaolong Yang, 2023. "Stepwise taming of triplet excitons via multiple confinements in intrinsic polymers for long-lived room-temperature phosphorescence," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Xiao Wang & Wenjing Sun & Huifang Shi & Huili Ma & Guowei Niu & Yuxin Li & Jiahuan Zhi & Xiaokang Yao & Zhicheng Song & Lei Chen & Shi Li & Guohui Yang & Zixing Zhou & Yixiao He & Shuli Qu & Min Wu & , 2022. "Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Hui Li & Jie Gu & Zijie Wang & Juan Wang & Fei He & Ping Li & Ye Tao & Huanhuan Li & Gaozhan Xie & Wei Huang & Chao Zheng & Runfeng Chen, 2022. "Single-component color-tunable circularly polarized organic afterglow through chiral clusterization," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37157-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.