IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37137-0.html
   My bibliography  Save this article

UNC-43/CaMKII-triggered anterograde signals recruit GABAARs to mediate inhibitory synaptic transmission and plasticity at C. elegans NMJs

Author

Listed:
  • Yue Hao

    (ShanghaiTech University
    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Haowen Liu

    (The University of Queensland)

  • Xian-Ting Zeng

    (ShanghaiTech University)

  • Ya Wang

    (Huazhong University of Science and Technology)

  • Wan-Xin Zeng

    (ShanghaiTech University
    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Kang-Ying Qian

    (ShanghaiTech University
    CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lei Li

    (The University of Queensland)

  • Ming-Xuan Chi

    (ShanghaiTech University)

  • Shangbang Gao

    (Huazhong University of Science and Technology)

  • Zhitao Hu

    (The University of Queensland)

  • Xia-Jing Tong

    (ShanghaiTech University)

Abstract

Disturbed inhibitory synaptic transmission has functional impacts on neurodevelopmental and psychiatric disorders. An essential mechanism for modulating inhibitory synaptic transmission is alteration of the postsynaptic abundance of GABAARs, which are stabilized by postsynaptic scaffold proteins and recruited by presynaptic signals. However, how GABAergic neurons trigger signals to transsynaptically recruit GABAARs remains elusive. Here, we show that UNC-43/CaMKII functions at GABAergic neurons to recruit GABAARs and modulate inhibitory synaptic transmission at C. elegans neuromuscular junctions. We demonstrate that UNC-43 promotes presynaptic MADD-4B/Punctin secretion and NRX-1α/Neurexin surface delivery. Together, MADD-4B and NRX-1α recruit postsynaptic NLG-1/Neuroligin and stabilize GABAARs. Further, the excitation of GABAergic neurons potentiates the recruitment of NLG-1-stabilized-GABAARs, which depends on UNC-43, MADD-4B, and NRX-1. These data all support that UNC-43 triggers MADD-4B and NRX-1α, which act as anterograde signals to recruit postsynaptic GABAARs. Thus, our findings elucidate a mechanism for pre- and postsynaptic communication and inhibitory synaptic transmission and plasticity.

Suggested Citation

  • Yue Hao & Haowen Liu & Xian-Ting Zeng & Ya Wang & Wan-Xin Zeng & Kang-Ying Qian & Lei Li & Ming-Xuan Chi & Shangbang Gao & Zhitao Hu & Xia-Jing Tong, 2023. "UNC-43/CaMKII-triggered anterograde signals recruit GABAARs to mediate inhibitory synaptic transmission and plasticity at C. elegans NMJs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37137-0
    DOI: 10.1038/s41467-023-37137-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37137-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37137-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Enrica Maria Petrini & Tiziana Ravasenga & Torben J. Hausrat & Giuliano Iurilli & Umberto Olcese & Victor Racine & Jean-Baptiste Sibarita & Tija C. Jacob & Stephen J. Moss & Fabio Benfenati & Paolo Me, 2014. "Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP," Nature Communications, Nature, vol. 5(1), pages 1-19, September.
    2. Qionger He & Ian Duguid & Beverley Clark & Patrizia Panzanelli & Bijal Patel & Philip Thomas & Jean-Marc Fritschy & Trevor G. Smart, 2015. "Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
    3. Christopher Rongo & Joshua M. Kaplan, 1999. "CaMKII regulates the density of central glutamatergic synapses in vivo," Nature, Nature, vol. 402(6758), pages 195-199, November.
    4. Daichi Kamiyama & Sayaka Sekine & Benjamin Barsi-Rhyne & Jeffrey Hu & Baohui Chen & Luke A. Gilbert & Hiroaki Ishikawa & Manuel D. Leonetti & Wallace F. Marshall & Jonathan S. Weissman & Bo Huang, 2016. "Versatile protein tagging in cells with split fluorescent protein," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeshi Hori & Hiroaki Okae & Shun Shibata & Norio Kobayashi & Eri H. Kobayashi & Akira Oike & Asato Sekiya & Takahiro Arima & Hirokazu Kaji, 2024. "Trophoblast stem cell-based organoid models of the human placental barrier," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Alba Muniesa-Vargas & Carlota Davó-Martínez & Cristina Ribeiro-Silva & Melanie van der Woude & Karen L. Thijssen & Ben Haspels & David Häckes & Ülkem U. Kaynak & Roland Kanaar & Jurgen A. Marteijn & A, 2024. "Persistent TFIIH binding to non-excised DNA damage causes cell and developmental failure," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Alessandro Rossetta & Eli Slenders & Mattia Donato & Sabrina Zappone & Francesco Fersini & Martina Bruno & Francesco Diotalevi & Luca Lanzanò & Sami Koho & Giorgio Tortarolo & Andrea Barberis & Marco , 2022. "The BrightEyes-TTM as an open-source time-tagging module for democratising single-photon microscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Lee B. Miles & Vanessa Calcinotto & Sara Oveissi & Rita J. Serrano & Carmen Sonntag & Orlen Mulia & Clara Lee & Robert J. Bryson-Richardson, 2024. "CRIMP: a CRISPR/Cas9 insertional mutagenesis protocol and toolkit," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Arne Praznik & Tina Fink & Nik Franko & Jan Lonzarić & Mojca Benčina & Nina Jerala & Tjaša Plaper & Samo Roškar & Roman Jerala, 2022. "Regulation of protein secretion through chemical regulation of endoplasmic reticulum retention signal cleavage," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Anna Rubinski & Noam E Ziv, 2015. "Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-29, November.
    7. Sayaka Sekine & Mitsusuke Tarama & Housei Wada & Mustafa M. Sami & Tatsuo Shibata & Shigeo Hayashi, 2024. "Emergence of periodic circumferential actin cables from the anisotropic fusion of actin nanoclusters during tubulogenesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Calvin Dumesnil & Lauri Vanharanta & Xavier Prasanna & Mohyeddine Omrane & Maxime Carpentier & Apoorva Bhapkar & Giray Enkavi & Veijo T. Salo & Ilpo Vattulainen & Elina Ikonen & Abdou Rachid Thiam, 2023. "Cholesterol esters form supercooled lipid droplets whose nucleation is facilitated by triacylglycerols," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37137-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.