IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v402y1999i6758d10.1038_46065.html
   My bibliography  Save this article

CaMKII regulates the density of central glutamatergic synapses in vivo

Author

Listed:
  • Christopher Rongo

    (LSA 361, University of California)

  • Joshua M. Kaplan

    (LSA 361, University of California)

Abstract

Synaptic connections undergo a dynamic process of stabilization or elimination during development, and this process is thought to be critical in memory and learning and in establishing the specificity of synaptic connections1. The type II calcium- and calmodulin-dependent protein kinase (CaMKII) has been proposed to be pivotal in regulating synaptic strength2,3,4 and in maturation of synapses during development5. Here we describe how CaMKII regulates the formation of central glutamatergic synapses in Caenorhabditis elegans. During larval development, the density of ventral nerve cord synapses containing the GLR-1 glutamate receptor is held constant despite marked changes in neurite length. The coupling of synapse number to neurite length requires both CaMKII and voltage-gated calcium channels. CaMKII regulates GLR-1 by at least two distinct mechanisms: regulating transport of GLR-1 from cell bodies to neurites; and regulating the addition or maintenance of GLR-1 to postsynaptic elements.

Suggested Citation

  • Christopher Rongo & Joshua M. Kaplan, 1999. "CaMKII regulates the density of central glutamatergic synapses in vivo," Nature, Nature, vol. 402(6758), pages 195-199, November.
  • Handle: RePEc:nat:nature:v:402:y:1999:i:6758:d:10.1038_46065
    DOI: 10.1038/46065
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/46065
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/46065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Hao & Haowen Liu & Xian-Ting Zeng & Ya Wang & Wan-Xin Zeng & Kang-Ying Qian & Lei Li & Ming-Xuan Chi & Shangbang Gao & Zhitao Hu & Xia-Jing Tong, 2023. "UNC-43/CaMKII-triggered anterograde signals recruit GABAARs to mediate inhibitory synaptic transmission and plasticity at C. elegans NMJs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:402:y:1999:i:6758:d:10.1038_46065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.