IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4921.html
   My bibliography  Save this article

Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP

Author

Listed:
  • Enrica Maria Petrini

    (The Italian Institute of Technology)

  • Tiziana Ravasenga

    (The Italian Institute of Technology)

  • Torben J. Hausrat

    (Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg Eppendorf)

  • Giuliano Iurilli

    (The Italian Institute of Technology)

  • Umberto Olcese

    (The Italian Institute of Technology)

  • Victor Racine

    (Institute of Molecular and Cell Biology)

  • Jean-Baptiste Sibarita

    (Interdisciplinary Institute for Neuroscience, University of Bordeaux
    CNRS UMR 5297)

  • Tija C. Jacob

    (University of Pittsburgh)

  • Stephen J. Moss

    (Tufts University)

  • Fabio Benfenati

    (The Italian Institute of Technology
    University of Genova)

  • Paolo Medini

    (The Italian Institute of Technology)

  • Matthias Kneussel

    (Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg Eppendorf)

  • Andrea Barberis

    (The Italian Institute of Technology)

Abstract

Postsynaptic long-term potentiation of inhibition (iLTP) can rely on increased GABAA receptors (GABAARs) at synapses by promoted exocytosis. However, the molecular mechanisms that enhance the clustering of postsynaptic GABAARs during iLTP remain obscure. Here we demonstrate that during chemically induced iLTP (chem-iLTP), GABAARs are immobilized and confined at synapses, as revealed by single-particle tracking of individual GABAARs in cultured hippocampal neurons. Chem-iLTP expression requires synaptic recruitment of the scaffold protein gephyrin from extrasynaptic areas, which in turn is promoted by CaMKII-dependent phosphorylation of GABAAR-β3-Ser383. Impairment of gephyrin assembly prevents chem-iLTP and, in parallel, blocks the accumulation and immobilization of GABAARs at synapses. Importantly, an increase of gephyrin and GABAAR similar to those observed during chem-iLTP in cultures were found in the rat visual cortex following an experience-dependent plasticity protocol that potentiates inhibitory transmission in vivo. Thus, phospho-GABAAR-β3-dependent accumulation of gephyrin at synapses and receptor immobilization are crucial for iLTP expression and are likely to modulate network excitability.

Suggested Citation

  • Enrica Maria Petrini & Tiziana Ravasenga & Torben J. Hausrat & Giuliano Iurilli & Umberto Olcese & Victor Racine & Jean-Baptiste Sibarita & Tija C. Jacob & Stephen J. Moss & Fabio Benfenati & Paolo Me, 2014. "Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP," Nature Communications, Nature, vol. 5(1), pages 1-19, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4921
    DOI: 10.1038/ncomms4921
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4921
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Rossetta & Eli Slenders & Mattia Donato & Sabrina Zappone & Francesco Fersini & Martina Bruno & Francesco Diotalevi & Luca Lanzanò & Sami Koho & Giorgio Tortarolo & Andrea Barberis & Marco , 2022. "The BrightEyes-TTM as an open-source time-tagging module for democratising single-photon microscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Anna Rubinski & Noam E Ziv, 2015. "Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-29, November.
    3. Yue Hao & Haowen Liu & Xian-Ting Zeng & Ya Wang & Wan-Xin Zeng & Kang-Ying Qian & Lei Li & Ming-Xuan Chi & Shangbang Gao & Zhitao Hu & Xia-Jing Tong, 2023. "UNC-43/CaMKII-triggered anterograde signals recruit GABAARs to mediate inhibitory synaptic transmission and plasticity at C. elegans NMJs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.