IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37085-9.html
   My bibliography  Save this article

3D printing of dynamic covalent polymer network with on-demand geometric and mechanical reprogrammability

Author

Listed:
  • Zizheng Fang

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center
    Zhejiang University)

  • Yunpeng Shi

    (Zhejiang University)

  • Hongfeng Mu

    (Zhejiang University)

  • Runzhi Lu

    (Zhejiang University)

  • Jingjun Wu

    (Zhejiang University
    Zhejiang University)

  • Tao Xie

    (Zhejiang University)

Abstract

Delicate geometries and suitable mechanical properties are essential for device applications of polymer materials. 3D printing offers unprecedented versatility, but the geometries and mechanical properties are typically fixed after printing. Here, we report a 3D photo-printable dynamic covalent network that can undergo two independently controllable bond exchange reactions, allowing reprogramming the geometry and mechanical properties after printing. Specifically, the network is designed to contain hindered urea bonds and pendant hydroxyl groups. The homolytic exchange between hindered urea bonds allows reconfiguring the printed shape without affecting the network topology and mechanical properties. Under different conditions, the hindered urea bonds are transformed into urethane bonds via exchange reactions with hydroxyl groups, which permits tailoring of the mechanical properties. The freedom to reprogram the shape and properties in an on-demand fashion offers the opportunity to produce multiple 3D printed products from one single printing step.

Suggested Citation

  • Zizheng Fang & Yunpeng Shi & Hongfeng Mu & Runzhi Lu & Jingjun Wu & Tao Xie, 2023. "3D printing of dynamic covalent polymer network with on-demand geometric and mechanical reprogrammability," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37085-9
    DOI: 10.1038/s41467-023-37085-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37085-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37085-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. J. Schwartz & A. J. Boydston, 2019. "Multimaterial actinic spatial control 3D and 4D printing," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Mark A. Skylar-Scott & Jochen Mueller & Claas W. Visser & Jennifer A. Lewis, 2019. "Voxelated soft matter via multimaterial multinozzle 3D printing," Nature, Nature, vol. 575(7782), pages 330-335, November.
    3. Brady T. Worrell & Matthew K. McBride & Gayla B. Lyon & Lewis M. Cox & Chen Wang & Sudheendran Mavila & Chern-Hooi Lim & Hannah M. Coley & Charles B. Musgrave & Yifu Ding & Christopher N. Bowman, 2018. "Publisher Correction: Bistable and photoswitchable states of matter," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    4. Wen-Xing Liu & Zhusheng Yang & Zhi Qiao & Long Zhang & Ning Zhao & Sanzhong Luo & Jian Xu, 2019. "Dynamic multiphase semi-crystalline polymers based on thermally reversible pyrazole-urea bonds," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Yu Zhang & Zhichao Dong & Chuxin Li & Huifeng Du & Nicholas X. Fang & Lei Wu & Yanlin Song, 2020. "Continuous 3D printing from one single droplet," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Jingjun Wu & Jing Guo & Changhong Linghu & Yahui Lu & Jizhou Song & Tao Xie & Qian Zhao, 2021. "Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Samuel N. Sanders & Tracy H. Schloemer & Mahesh K. Gangishetty & Daniel Anderson & Michael Seitz & Arynn O. Gallegos & R. Christopher Stokes & Daniel N. Congreve, 2022. "Triplet fusion upconversion nanocapsules for volumetric 3D printing," Nature, Nature, vol. 604(7906), pages 474-478, April.
    8. Biao Zhang & Kavin Kowsari & Ahmad Serjouei & Martin L. Dunn & Qi Ge, 2018. "Reprocessable thermosets for sustainable three-dimensional printing," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    9. Brady T. Worrell & Matthew K. McBride & Gayla B. Lyon & Lewis M. Cox & Chen Wang & Sudheendran Mavila & Chern-Hooi Lim & Hannah M. Coley & Charles B. Musgrave & Yifu Ding & Christopher N. Bowman, 2018. "Bistable and photoswitchable states of matter," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    10. Wusha Miao & Weike Zou & Binjie Jin & Chujun Ni & Ning Zheng & Qian Zhao & Tao Xie, 2020. "On demand shape memory polymer via light regulated topological defects in a dynamic covalent network," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Yue & Xiaohao Sun & Luxia Yu & Mingzhe Li & S. Macrae Montgomery & Yuyang Song & Tsuyoshi Nomura & Masato Tanaka & H. Jerry Qi, 2023. "Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle C. H. Chin & Grant Ovsepyan & Andrew J. Boydston, 2024. "Multi-color dual wavelength vat photopolymerization 3D printing via spatially controlled acidity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Liang Yue & S. Macrae Montgomery & Xiaohao Sun & Luxia Yu & Yuyang Song & Tsuyoshi Nomura & Masato Tanaka & H. Jerry Qi, 2023. "Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Qingrui Wang & Xiaoyong Tian & Daokang Zhang & Yanli Zhou & Wanquan Yan & Dichen Li, 2023. "Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Jianxiang Cheng & Rong Wang & Zechu Sun & Qingjiang Liu & Xiangnan He & Honggeng Li & Haitao Ye & Xingxin Yang & Xinfeng Wei & Zhenqing Li & Bingcong Jian & Weiwei Deng & Qi Ge, 2022. "Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Le Zeng & Ling Huang & Wenhai Lin & Lin-Han Jiang & Gang Han, 2023. "Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet-triplet annihilation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Ying Hong & Shiyuan Liu & Xiaodan Yang & Wang Hong & Yao Shan & Biao Wang & Zhuomin Zhang & Xiaodong Yan & Weikang Lin & Xuemu Li & Zehua Peng & Xiaote Xu & Zhengbao Yang, 2024. "A bioinspired surface tension-driven route toward programmed cellular ceramics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Zewen Lin & Xiaowen Qiu & Zhouqishuo Cai & Jialiang Li & Yanan Zhao & Xinping Lin & Jinmeng Zhang & Xiaolan Hu & Hua Bai, 2024. "High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Sang-Joon Ahn & Howon Lee & Kyu-Jin Cho, 2024. "3D printing with a 3D printed digital material filament for programming functional gradients," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Jing Chen & Yiyang Gao & Lei Shi & Wei Yu & Zongjie Sun & Yifan Zhou & Shuang Liu & Heng Mao & Dongyang Zhang & Tongqing Lu & Quan Chen & Demei Yu & Shujiang Ding, 2022. "Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Bujingda Zheng & Yunchao Xie & Shichen Xu & Andrew C. Meng & Shaoyun Wang & Yuchao Wu & Shuhong Yang & Caixia Wan & Guoliang Huang & James M. Tour & Jian Lin, 2024. "Programmed multimaterial assembly by synergized 3D printing and freeform laser induction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Bin Wang & Einstom Engay & Peter R. Stubbe & Saeed Z. Moghaddam & Esben Thormann & Kristoffer Almdal & Aminul Islam & Yi Yang, 2022. "Stiffness control in dual color tomographic volumetric 3D printing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Mohsen Habibi & Shervin Foroughi & Vahid Karamzadeh & Muthukumaran Packirisamy, 2022. "Direct sound printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Bo Qin & Siyuan Liu & Zehuan Huang & Lingda Zeng & Jiang-Fei Xu & Xi Zhang, 2022. "Closed-loop chemical recycling of cross-linked polymeric materials based on reversible amidation chemistry," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Jiayao Chen & Lin Li & Jiancheng Luo & Lingyao Meng & Xiao Zhao & Shenghan Song & Zoriana Demchuk & Pei Li & Yi He & Alexei P. Sokolov & Peng-Fei Cao, 2024. "Covalent adaptable polymer networks with CO2-facilitated recyclability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    19. Pei He & Junyu Yue & Zhennan Qiu & Zijie Meng & Jiankang He & Dichen Li, 2024. "Consecutive multimaterial printing of biomimetic ionic hydrogel power sources with high flexibility and stretchability," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Zhuoxing Liu & Zidong Zhan & Tao Shen & Ning Li & Chengqi Zhang & Cunlong Yu & Chuxin Li & Yifan Si & Lei Jiang & Zhichao Dong, 2023. "Dual-bionic superwetting gears with liquid directional steering for oil-water separation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37085-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.