IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30364-x.html
   My bibliography  Save this article

Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers

Author

Listed:
  • Yan Mei Li

    (Sun Yat-sen University)

  • Ze Ping Zhang

    (Sun Yat-sen University)

  • Min Zhi Rong

    (Sun Yat-sen University)

  • Ming Qiu Zhang

    (Sun Yat-sen University)

Abstract

To impart self-healing polymers largely adjustable dynamicity and mechanical performance, here we develop libraries of catalyst-free reversible polythioureas directly from commodity 1,4-phenylene diisothiocyanate and amines via facile click chemistry based modular assembly. By using the amine modules with various steric hindrances and flexibilities, the reversible thiourea units acquire triggering temperatures from room temperature to 120 °C. Accordingly, the derived self-healable, recyclable and controlled degradable dynamically crosslinked polythioureas can take effect within wide temperature range. Moreover, mechanical properties of the materials can be tuned covering plastics, elastomers and fibers using (i) different assemble modules or (ii) solid-state stretching. Particularly, unidirectional stretching leads to the record-high tensile strength of 266 MPa, while bidirectional stretching provides the materials with biaxial strengths up to over 120 MPa. The molecular mechanism and technological innovations discussed in this work may benefit promotion and application of self-healing polymers towards greatly diverse demands and scenarios.

Suggested Citation

  • Yan Mei Li & Ze Ping Zhang & Min Zhi Rong & Ming Qiu Zhang, 2022. "Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30364-x
    DOI: 10.1038/s41467-022-30364-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30364-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30364-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuyan Wang & Xin Huang & Xinxing Zhang, 2021. "Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Wen-Xing Liu & Zhusheng Yang & Zhi Qiao & Long Zhang & Ning Zhao & Sanzhong Luo & Jian Xu, 2019. "Dynamic multiphase semi-crystalline polymers based on thermally reversible pyrazole-urea bonds," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Hanze Ying & Yanfeng Zhang & Jianjun Cheng, 2014. "Dynamic urea bond for the design of reversible and self-healing polymers," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    4. Jian-Cheng Lai & Xiao-Yong Jia & Da-Peng Wang & Yi-Bing Deng & Peng Zheng & Cheng-Hui Li & Jing-Lin Zuo & Zhenan Bao, 2019. "Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Haijun Feng & Ning Zheng & Wenjun Peng & Chujun Ni & Huijie Song & Qian Zhao & Tao Xie, 2022. "Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayao Chen & Lin Li & Jiancheng Luo & Lingyao Meng & Xiao Zhao & Shenghan Song & Zoriana Demchuk & Pei Li & Yi He & Alexei P. Sokolov & Peng-Fei Cao, 2024. "Covalent adaptable polymer networks with CO2-facilitated recyclability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Chen & Yiyang Gao & Lei Shi & Wei Yu & Zongjie Sun & Yifan Zhou & Shuang Liu & Heng Mao & Dongyang Zhang & Tongqing Lu & Quan Chen & Demei Yu & Shujiang Ding, 2022. "Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Bo Qin & Siyuan Liu & Zehuan Huang & Lingda Zeng & Jiang-Fei Xu & Xi Zhang, 2022. "Closed-loop chemical recycling of cross-linked polymeric materials based on reversible amidation chemistry," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Zhaoming Zhang & Jun Zhao & Zhewen Guo & Hao Zhang & Hui Pan & Qian Wu & Wei You & Wei Yu & Xuzhou Yan, 2022. "Mechanically interlocked networks cross-linked by a molecular necklace," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Dace Gao & Gurunathan Thangavel & Junwoo Lee & Jian Lv & Yi Li & Jing-Hao Ciou & Jiaqing Xiong & Taiho Park & Pooi See Lee, 2023. "A supramolecular gel-elastomer system for soft iontronic adhesives," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Hyunchang Park & Taewon Kang & Hyunjun Kim & Jeong-Chul Kim & Zhenan Bao & Jiheong Kang, 2023. "Toughening self-healing elastomer crosslinked by metal–ligand coordination through mixed counter anion dynamics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Zizheng Fang & Yunpeng Shi & Hongfeng Mu & Runzhi Lu & Jingjun Wu & Tao Xie, 2023. "3D printing of dynamic covalent polymer network with on-demand geometric and mechanical reprogrammability," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. FuYao Sun & LongFei Liu & Tong Liu & XueBin Wang & Qi Qi & ZuSheng Hang & Kai Chen & JianHua Xu & JiaJun Fu, 2023. "Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30364-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.