IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50738-7.html
   My bibliography  Save this article

Covalent adaptable polymer networks with CO2-facilitated recyclability

Author

Listed:
  • Jiayao Chen

    (Beijing University of Chemical Technology)

  • Lin Li

    (Beijing University of Chemical Technology)

  • Jiancheng Luo

    (Oak Ridge National Laboratory)

  • Lingyao Meng

    (Oak Ridge National Laboratory)

  • Xiao Zhao

    (GCP Applied Technologies)

  • Shenghan Song

    (University of New Mexico)

  • Zoriana Demchuk

    (Oak Ridge National Laboratory)

  • Pei Li

    (Beijing University of Chemical Technology)

  • Yi He

    (University of New Mexico)

  • Alexei P. Sokolov

    (Oak Ridge National Laboratory
    University of Tennessee)

  • Peng-Fei Cao

    (Beijing University of Chemical Technology)

Abstract

Cross-linked polymers with covalent adaptable networks (CANs) can be reprocessed under external stimuli owing to the exchangeability of dynamic covalent bonds. Optimization of reprocessing conditions is critical since increasing the reprocessing temperature costs more energy and even deteriorates the materials, while reducing the reprocessing temperature via molecular design usually narrows the service temperature range. Exploiting CO2 gas as an external trigger for lowering the reprocessing barrier shows great promise in low sample contamination and environmental friendliness. Herein, we develop a type of CANs incorporated with ionic clusters that achieve CO2-facilitated recyclability without sacrificing performance. The presence of CO2 can facilitate the rearrangement of ionic clusters, thus promoting the exchange of dynamic bonds. The effective stress relaxation and network rearrangement enable the system with rapid recycling under CO2 while retaining excellent mechanical performance in working conditions. This work opens avenues to design recyclable polymer materials with tunable dynamics and responsive recyclability.

Suggested Citation

  • Jiayao Chen & Lin Li & Jiancheng Luo & Lingyao Meng & Xiao Zhao & Shenghan Song & Zoriana Demchuk & Pei Li & Yi He & Alexei P. Sokolov & Peng-Fei Cao, 2024. "Covalent adaptable polymer networks with CO2-facilitated recyclability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50738-7
    DOI: 10.1038/s41467-024-50738-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50738-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50738-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wim Denissen & Martijn Droesbeke & Renaud Nicolaÿ & Ludwik Leibler & Johan M. Winne & Filip E. Du Prez, 2017. "Chemical control of the viscoelastic properties of vinylogous urethane vitrimers," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    2. Yan Mei Li & Ze Ping Zhang & Min Zhi Rong & Ming Qiu Zhang, 2022. "Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Yohei Miwa & Kenjiro Taira & Junosuke Kurachi & Taro Udagawa & Shoichi Kutsumizu, 2019. "A gas-plastic elastomer that quickly self-heals damage with the aid of CO2 gas," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    4. Wusha Miao & Weike Zou & Binjie Jin & Chujun Ni & Ning Zheng & Qian Zhao & Tao Xie, 2020. "On demand shape memory polymer via light regulated topological defects in a dynamic covalent network," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derek J. Bischoff & Taeheon Lee & Kyung-Seok Kang & Jake Molineux & Wallace O’Neil Parker & Jeffrey Pyun & Michael E. Mackay, 2023. "Unraveling the rheology of inverse vulcanized polymers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Zizheng Fang & Yunpeng Shi & Hongfeng Mu & Runzhi Lu & Jingjun Wu & Tao Xie, 2023. "3D printing of dynamic covalent polymer network with on-demand geometric and mechanical reprogrammability," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Guancong Chen & Haijun Feng & Xiaorui Zhou & Feng Gao & Kai Zhou & Youju Huang & Binjie Jin & Tao Xie & Qian Zhao, 2023. "Programming actuation onset of a liquid crystalline elastomer via isomerization of network topology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50738-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.