IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v604y2022i7906d10.1038_s41586-022-04485-8.html
   My bibliography  Save this article

Triplet fusion upconversion nanocapsules for volumetric 3D printing

Author

Listed:
  • Samuel N. Sanders

    (Rowland Institute at Harvard University)

  • Tracy H. Schloemer

    (Rowland Institute at Harvard University
    Stanford University)

  • Mahesh K. Gangishetty

    (Rowland Institute at Harvard University)

  • Daniel Anderson

    (Rowland Institute at Harvard University)

  • Michael Seitz

    (Rowland Institute at Harvard University
    Stanford University)

  • Arynn O. Gallegos

    (Stanford University)

  • R. Christopher Stokes

    (Rowland Institute at Harvard University)

  • Daniel N. Congreve

    (Rowland Institute at Harvard University
    Stanford University)

Abstract

Three-dimensional (3D) printing has exploded in interest as new technologies have opened up a multitude of applications1–6, with stereolithography a particularly successful approach4,7–9. However, owing to the linear absorption of light, this technique requires photopolymerization to occur at the surface of the printing volume, imparting fundamental limitations on resin choice and shape gamut. One promising way to circumvent this interfacial paradigm is to move beyond linear processes, with many groups using two-photon absorption to print in a truly volumetric fashion3,7–9. Using two-photon absorption, many groups and companies have been able to create remarkable nanoscale structures4,5, but the laser power required to drive this process has limited print size and speed, preventing widespread application beyond the nanoscale. Here we use triplet fusion upconversion10–13 to print volumetrically with less than 4 milliwatt continuous-wave excitation. Upconversion is introduced to the resin by means of encapsulation with a silica shell and solubilizing ligands. We further introduce an excitonic strategy to systematically control the upconversion threshold to support either monovoxel or parallelized printing schemes, printing at power densities several orders of magnitude lower than the power densities required for two-photon-based 3D printing.

Suggested Citation

  • Samuel N. Sanders & Tracy H. Schloemer & Mahesh K. Gangishetty & Daniel Anderson & Michael Seitz & Arynn O. Gallegos & R. Christopher Stokes & Daniel N. Congreve, 2022. "Triplet fusion upconversion nanocapsules for volumetric 3D printing," Nature, Nature, vol. 604(7906), pages 474-478, April.
  • Handle: RePEc:nat:nature:v:604:y:2022:i:7906:d:10.1038_s41586-022-04485-8
    DOI: 10.1038/s41586-022-04485-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04485-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04485-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zizheng Fang & Yunpeng Shi & Hongfeng Mu & Runzhi Lu & Jingjun Wu & Tao Xie, 2023. "3D printing of dynamic covalent polymer network with on-demand geometric and mechanical reprogrammability," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Le Zeng & Ling Huang & Wenhai Lin & Lin-Han Jiang & Gang Han, 2023. "Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet-triplet annihilation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Peng Hu & Hang Xu & Yue Pan & Xinxin Sang & Ren Liu, 2023. "Upconversion particle-assisted NIR polymerization enables microdomain gradient photopolymerization at inter-particulate length scale," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:604:y:2022:i:7906:d:10.1038_s41586-022-04485-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.