IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31275-7.html
   My bibliography  Save this article

Breaking the nanoparticle’s dispersible limit via rotatable surface ligands

Author

Listed:
  • Yue Liu

    (Zhejiang University)

  • Na Peng

    (Zhejiang University
    Hainan Institute of Zhejiang University)

  • Yifeng Yao

    (Zhejiang University)

  • Xuan Zhang

    (Zhejiang University)

  • Xianqi Peng

    (Zhejiang University)

  • Liyan Zhao

    (Zhejiang University)

  • Jing Wang

    (University of Michigan)

  • Liang Peng

    (City University of Hongkong)

  • Zuankai Wang

    (City University of Hongkong)

  • Kenji Mochizuki

    (Zhejiang University)

  • Min Yue

    (Zhejiang University
    Hainan Institute of Zhejiang University
    Zhejiang University School of Medicine)

  • Shikuan Yang

    (Zhejiang University
    Zhejiang University School of Medicine
    Zhejiang University
    Baotou Research Institute of Rare Earths)

Abstract

Achieving versatile dispersion of nanoparticles in a broad range of solvents (e.g., water, oil, and biofluids) without repeatedly recourse to chemical modifications are desirable in optoelectronic devices, self-assembly, sensing, and biomedical fields. However, such a target is limited by the strategies used to decorate nanoparticle’s surface properties, leading to a narrow range of solvents for existing nanoparticles. Here we report a concept to break the nanoparticle’s dispersible limit via electrochemically anchoring surface ligands capable of sensing the surrounding liquid medium and rotating to adapt to it, immediately forming stable dispersions in a wide range of solvents (polar and nonpolar, biofluids, etc.). Moreover, the smart nanoparticles can be continuously electrodeposited in the electrolyte, overcoming the electrode surface-confined low throughput limitation of conventional electrodeposition methods. The anomalous dispersive property of the smart Ag nanoparticles enables them to resist bacteria secreted species-induced aggregation and the structural similarity of the surface ligands to that of the bacterial membrane assists them to enter the bacteria, leading to high antibacterial activity. The simple but massive fabrication process and the enhanced dispersion properties offer great application opportunities to the smart nanoparticles in diverse fields.

Suggested Citation

  • Yue Liu & Na Peng & Yifeng Yao & Xuan Zhang & Xianqi Peng & Liyan Zhao & Jing Wang & Liang Peng & Zuankai Wang & Kenji Mochizuki & Min Yue & Shikuan Yang, 2022. "Breaking the nanoparticle’s dispersible limit via rotatable surface ligands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31275-7
    DOI: 10.1038/s41467-022-31275-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31275-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31275-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark A. Skylar-Scott & Jochen Mueller & Claas W. Visser & Jennifer A. Lewis, 2019. "Voxelated soft matter via multimaterial multinozzle 3D printing," Nature, Nature, vol. 575(7782), pages 330-335, November.
    2. Elena V. Shevchenko & Dmitri V. Talapin & Nicholas A. Kotov & Stephen O'Brien & Christopher B. Murray, 2006. "Structural diversity in binary nanoparticle superlattices," Nature, Nature, vol. 439(7072), pages 55-59, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youyou Lu & Xuan Zhang & Liyan Zhao & Hong Liu & Mi Yan & Xiaochen Zhang & Kenji Mochizuki & Shikuan Yang, 2023. "Metal-organic framework template-guided electrochemical lithography on substrates for SERS sensing applications," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle C. H. Chin & Grant Ovsepyan & Andrew J. Boydston, 2024. "Multi-color dual wavelength vat photopolymerization 3D printing via spatially controlled acidity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Bum Chul Park & Min Jun Ko & Young Kwang Kim & Gyu Won Kim & Myeong Soo Kim & Thomas Myeongseok Koo & Hong En Fu & Young Keun Kim, 2022. "Surface-ligand-induced crystallographic disorder–order transition in oriented attachment for the tuneable assembly of mesocrystals," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Liang Yue & S. Macrae Montgomery & Xiaohao Sun & Luxia Yu & Yuyang Song & Tsuyoshi Nomura & Masato Tanaka & H. Jerry Qi, 2023. "Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Zewen Lin & Xiaowen Qiu & Zhouqishuo Cai & Jialiang Li & Yanan Zhao & Xinping Lin & Jinmeng Zhang & Xiaolan Hu & Hua Bai, 2024. "High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Dengsheng Wu & Xiaoli Lu & Jianping Li & Jing Li, 2020. "Does the institutional diversity of editorial boards increase journal quality? The case economics field," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1579-1597, August.
    7. Sang-Joon Ahn & Howon Lee & Kyu-Jin Cho, 2024. "3D printing with a 3D printed digital material filament for programming functional gradients," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Pengji Zhou & Sharon C. Glotzer, 2021. "Inverse design of isotropic pair potentials using digital alchemy with a generalized Fourier potential," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(12), pages 1-10, December.
    9. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Bujingda Zheng & Yunchao Xie & Shichen Xu & Andrew C. Meng & Shaoyun Wang & Yuchao Wu & Shuhong Yang & Caixia Wan & Guoliang Huang & James M. Tour & Jian Lin, 2024. "Programmed multimaterial assembly by synergized 3D printing and freeform laser induction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Bin Wang & Einstom Engay & Peter R. Stubbe & Saeed Z. Moghaddam & Esben Thormann & Kristoffer Almdal & Aminul Islam & Yi Yang, 2022. "Stiffness control in dual color tomographic volumetric 3D printing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Mohsen Habibi & Shervin Foroughi & Vahid Karamzadeh & Muthukumaran Packirisamy, 2022. "Direct sound printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Pei He & Junyu Yue & Zhennan Qiu & Zijie Meng & Jiankang He & Dichen Li, 2024. "Consecutive multimaterial printing of biomimetic ionic hydrogel power sources with high flexibility and stretchability," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Mahdi Derayatifar & Mohsen Habibi & Rama Bhat & Muthukumaran Packirisamy, 2024. "Holographic direct sound printing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Huawei Qu & Chongjian Gao & Kaizheng Liu & Hongya Fu & Zhiyuan Liu & Paul H. J. Kouwer & Zhenyu Han & Changshun Ruan, 2024. "Gradient matters via filament diameter-adjustable 3D printing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Zizheng Fang & Yunpeng Shi & Hongfeng Mu & Runzhi Lu & Jingjun Wu & Tao Xie, 2023. "3D printing of dynamic covalent polymer network with on-demand geometric and mechanical reprogrammability," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Jianxiang Cheng & Rong Wang & Zechu Sun & Qingjiang Liu & Xiangnan He & Honggeng Li & Haitao Ye & Xingxin Yang & Xinfeng Wei & Zhenqing Li & Bingcong Jian & Weiwei Deng & Qi Ge, 2022. "Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Yilong Zhou & Gaurav Arya, 2022. "Discovery of two-dimensional binary nanoparticle superlattices using global Monte Carlo optimization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31275-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.