IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37004-y.html
   My bibliography  Save this article

Pan-genome inversion index reveals evolutionary insights into the subpopulation structure of Asian rice

Author

Listed:
  • Yong Zhou

    (King Abdullah University of Science and Technology (KAUST)
    University of Arizona)

  • Zhichao Yu

    (Huazhong Agricultural University)

  • Dmytro Chebotarov

    (International Rice Research Institute (IRRI), Los Baños)

  • Kapeel Chougule

    (Cold Spring Harbor Laboratory)

  • Zhenyuan Lu

    (Cold Spring Harbor Laboratory)

  • Luis F. Rivera

    (King Abdullah University of Science and Technology (KAUST))

  • Nagarajan Kathiresan

    (King Abdullah University of Science and Technology (KAUST))

  • Noor Al-Bader

    (King Abdullah University of Science and Technology (KAUST))

  • Nahed Mohammed

    (King Abdullah University of Science and Technology (KAUST))

  • Aseel Alsantely

    (King Abdullah University of Science and Technology (KAUST))

  • Saule Mussurova

    (King Abdullah University of Science and Technology (KAUST))

  • João Santos

    (King Abdullah University of Science and Technology (KAUST))

  • Manjula Thimma

    (King Abdullah University of Science and Technology (KAUST))

  • Maxim Troukhan

    (Persephone Software, LLC)

  • Alice Fornasiero

    (King Abdullah University of Science and Technology (KAUST))

  • Carl D. Green

    (King Abdullah University of Science and Technology (KAUST))

  • Dario Copetti

    (University of Arizona)

  • David Kudrna

    (University of Arizona)

  • Victor Llaca

    (Research and Development, Corteva Agriscience)

  • Mathias Lorieux

    (DIADE, University of Montpellier, CIRAD, IRD)

  • Andrea Zuccolo

    (King Abdullah University of Science and Technology (KAUST)
    Crop Science Research Center (CSRC), Scuola Superiore Sant’Anna)

  • Doreen Ware

    (Cold Spring Harbor Laboratory
    USDA ARS NEA Plant, Soil & Nutrition Laboratory Research Unit)

  • Kenneth McNally

    (International Rice Research Institute (IRRI), Los Baños)

  • Jianwei Zhang

    (University of Arizona
    Huazhong Agricultural University)

  • Rod A. Wing

    (King Abdullah University of Science and Technology (KAUST)
    University of Arizona
    International Rice Research Institute (IRRI), Los Baños)

Abstract

Understanding and exploiting genetic diversity is a key factor for the productive and stable production of rice. Here, we utilize 73 high-quality genomes that encompass the subpopulation structure of Asian rice (Oryza sativa), plus the genomes of two wild relatives (O. rufipogon and O. punctata), to build a pan-genome inversion index of 1769 non-redundant inversions that span an average of ~29% of the O. sativa cv. Nipponbare reference genome sequence. Using this index, we estimate an inversion rate of ~700 inversions per million years in Asian rice, which is 16 to 50 times higher than previously estimated for plants. Detailed analyses of these inversions show evidence of their effects on gene expression, recombination rate, and linkage disequilibrium. Our study uncovers the prevalence and scale of large inversions (≥100 bp) across the pan-genome of Asian rice and hints at their largely unexplored role in functional biology and crop performance.

Suggested Citation

  • Yong Zhou & Zhichao Yu & Dmytro Chebotarov & Kapeel Chougule & Zhenyuan Lu & Luis F. Rivera & Nagarajan Kathiresan & Noor Al-Bader & Nahed Mohammed & Aseel Alsantely & Saule Mussurova & João Santos & , 2023. "Pan-genome inversion index reveals evolutionary insights into the subpopulation structure of Asian rice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37004-y
    DOI: 10.1038/s41467-023-37004-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37004-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37004-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yonghui Wu & Prasanna R Bhat & Timothy J Close & Stefano Lonardi, 2008. "Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph," PLOS Genetics, Public Library of Science, vol. 4(10), pages 1-11, October.
    2. Daniel C. Jeffares & Clemency Jolly & Mimoza Hoti & Doug Speed & Liam Shaw & Charalampos Rallis & Francois Balloux & Christophe Dessimoz & Jürg Bähler & Fritz J. Sedlazeck, 2017. "Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast," Nature Communications, Nature, vol. 8(1), pages 1-11, April.
    3. Wensheng Wang & Ramil Mauleon & Zhiqiang Hu & Dmytro Chebotarov & Shuaishuai Tai & Zhichao Wu & Min Li & Tianqing Zheng & Roven Rommel Fuentes & Fan Zhang & Locedie Mansueto & Dario Copetti & Millicen, 2018. "Genomic variation in 3,010 diverse accessions of Asian cultivated rice," Nature, Nature, vol. 557(7703), pages 43-49, May.
    4. Lun Zhao & Liang Xie & Qing Zhang & Weizhi Ouyang & Li Deng & Pengpeng Guan & Meng Ma & Yue Li & Ying Zhang & Qin Xiao & Jingwen Zhang & Hongmeijuan Li & Shunyao Wang & Jiangwei Man & Zhilin Cao & Qin, 2020. "Integrative analysis of reference epigenomes in 20 rice varieties," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    5. Michal Levy-Sakin & Steven Pastor & Yulia Mostovoy & Le Li & Alden K. Y. Leung & Jennifer McCaffrey & Eleanor Young & Ernest T. Lam & Alex R. Hastie & Karen H. Y. Wong & Claire Y. L. Chung & Walfred M, 2019. "Genome maps across 26 human populations reveal population-specific patterns of structural variation," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weixiong Long & Qiang He & Yitao Wang & Yu Wang & Jie Wang & Zhengqing Yuan & Meijia Wang & Wei Chen & Lihua Luo & Laiyang Luo & Weibiao Xu & Yonghui Li & Wei Li & Longan Yan & Yaohui Cai & Huilong Du, 2024. "Genome evolution and diversity of wild and cultivated rice species," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Paris Veltsos & Luis J. Madrigal-Roca & John K. Kelly, 2024. "Testing the evolutionary theory of inversion polymorphisms in the yellow monkeyflower (Mimulus guttatus)," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Xuezhu Liao & Dejin Xie & Tingting Bao & Mengmeng Hou & Cheng Li & Bao Nie & Shichao Sun & Dan Peng & Haixiao Hu & Hongru Wang & Yongfu Tao & Yu Zhang & Wei Li & Li Wang, 2024. "Inversions encounter relaxed genetic constraints and balance birth and death of TPS genes in Curcuma," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Zeyu Zheng & Mingjia Zhu & Jin Zhang & Xinfeng Liu & Liqiang Hou & Wenyu Liu & Shuai Yuan & Changhong Luo & Xinhao Yao & Jianquan Liu & Yongzhi Yang, 2024. "A sequence-aware merger of genomic structural variations at population scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingyan Yu & Zhen Zhang & Xiaorui Dong & Ruixin Yang & Zhongqu Duan & Zhen Xiang & Jun Li & Guichao Li & Fazhe Yan & Hongzhang Xue & Du Jiao & Jinyuan Lu & Huimin Lu & Wenmin Zhang & Yangzhen Wei & Sh, 2022. "Pangenomic analysis of Chinese gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Heng Du & Lei Zhou & Zhen Liu & Yue Zhuo & Meilin Zhang & Qianqian Huang & Shiyu Lu & Kai Xing & Li Jiang & Jian-Feng Liu, 2024. "The 1000 Chinese Indigenous Pig Genomes Project provides insights into the genomic architecture of pigs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Yichen Henry Liu & Can Luo & Staunton G. Golding & Jacob B. Ioffe & Xin Maizie Zhou, 2024. "Tradeoffs in alignment and assembly-based methods for structural variant detection with long-read sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Xi Wang & Juan Li & Linqian Han & Chengyong Liang & Jiaxin Li & Xiaoyang Shang & Xinxin Miao & Zi Luo & Wanchao Zhu & Zhao Li & Tianhuan Li & Yongwen Qi & Huihui Li & Xiaoduo Lu & Lin Li, 2023. "QTG-Miner aids rapid dissection of the genetic base of tassel branch number in maize," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Liyuan Zhou & Qiongzi Qiu & Qing Zhou & Jianwei Li & Mengqian Yu & Kezhen Li & Lingling Xu & Xiaohui Ke & Haiming Xu & Bingjian Lu & Hui Wang & Weiguo Lu & Pengyuan Liu & Yan Lu, 2022. "Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Taylor, Julian & Butler, David, 2017. "R Package ASMap: Efficient Genetic Linkage Map Construction and Diagnosis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i06).
    7. Hideki Yoshida & Ko Hirano & Kenji Yano & Fanmiao Wang & Masaki Mori & Mayuko Kawamura & Eriko Koketsu & Masako Hattori & Reynante Lacsamana Ordonio & Peng Huang & Eiji Yamamoto & Makoto Matsuoka, 2022. "Genome-wide association study identifies a gene responsible for temperature-dependent rice germination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Yu Chen & Amy Y. Wang & Courtney A. Barkley & Yixin Zhang & Xinyang Zhao & Min Gao & Mick D. Edmonds & Zechen Chong, 2023. "Deciphering the exact breakpoints of structural variations using long sequencing reads with DeBreak," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Jinhyun Kim & Sungsik Kim & Huiran Yeom & Seo Woo Song & Kyoungseob Shin & Sangwook Bae & Han Suk Ryu & Ji Young Kim & Ahyoun Choi & Sumin Lee & Taehoon Ryu & Yeongjae Choi & Hamin Kim & Okju Kim & Yu, 2023. "Barcoded multiple displacement amplification for high coverage sequencing in spatial genomics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Rujia Chen & Ning Xiao & Yue Lu & Tianyun Tao & Qianfeng Huang & Shuting Wang & Zhichao Wang & Mingli Chuan & Qing Bu & Zhou Lu & Hanyao Wang & Yanze Su & Yi Ji & Jianheng Ding & Ahmed Gharib & Huixin, 2023. "A de novo evolved gene contributes to rice grain shape difference between indica and japonica," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. M. Mahmoud & Y. Huang & K. Garimella & P. A. Audano & W. Wan & N. Prasad & R. E. Handsaker & S. Hall & A. Pionzio & M. C. Schatz & M. E. Talkowski & E. E. Eichler & S. E. Levy & F. J. Sedlazeck, 2024. "Utility of long-read sequencing for All of Us," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Xiaoling Tong & Min-Jin Han & Kunpeng Lu & Shuaishuai Tai & Shubo Liang & Yucheng Liu & Hai Hu & Jianghong Shen & Anxing Long & Chengyu Zhan & Xin Ding & Shuo Liu & Qiang Gao & Bili Zhang & Linli Zhou, 2022. "High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Zeyu Zheng & Mingjia Zhu & Jin Zhang & Xinfeng Liu & Liqiang Hou & Wenyu Liu & Shuai Yuan & Changhong Luo & Xinhao Yao & Jianquan Liu & Yongzhi Yang, 2024. "A sequence-aware merger of genomic structural variations at population scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Tao Zhu & Chunjiao Xia & Ranran Yu & Xinkai Zhou & Xingbing Xu & Lin Wang & Zhanxiang Zong & Junjiao Yang & Yinmeng Liu & Luchang Ming & Yuxin You & Dijun Chen & Weibo Xie, 2024. "Comprehensive mapping and modelling of the rice regulome landscape unveils the regulatory architecture underlying complex traits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Huiying He & Yue Leng & Xinglan Cao & Yiwang Zhu & Xiaoxia Li & Qiaoling Yuan & Bin Zhang & Wenchuang He & Hua Wei & Xiangpei Liu & Qiang Xu & Mingliang Guo & Hong Zhang & Longbo Yang & Yang Lv & Xian, 2024. "The pan-tandem repeat map highlights multiallelic variants underlying gene expression and agronomic traits in rice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Daiqi Wang & Hongru Wang & Xiaomei Xu & Man Wang & Yahuan Wang & Hong Chen & Fei Ping & Huanhuan Zhong & Zhengkun Mu & Wantong Xie & Xiangyu Li & Jingbin Feng & Milan Zhang & Zhilan Fan & Tifeng Yang , 2023. "Two complementary genes in a presence-absence variation contribute to indica-japonica reproductive isolation in rice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Xiaojuan Fan & Yongtao Cui & Jian Song & Honghuan Fan & Liqun Tang & Jianjun Wang, 2024. "Preliminary Exploration of Physiology and Genetic Basis Underlying High Yield in Indica–Japonica Hybrid Rice," Agriculture, MDPI, vol. 14(4), pages 1-12, April.
    18. Cristian Groza & Xun Chen & Travis J. Wheeler & Guillaume Bourque & Clément Goubert, 2024. "A unified framework to analyze transposable element insertion polymorphisms using graph genomes," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Weixiong Long & Qiang He & Yitao Wang & Yu Wang & Jie Wang & Zhengqing Yuan & Meijia Wang & Wei Chen & Lihua Luo & Laiyang Luo & Weibiao Xu & Yonghui Li & Wei Li & Longan Yan & Yaohui Cai & Huilong Du, 2024. "Genome evolution and diversity of wild and cultivated rice species," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Ting Wang & Shiyao Duan & Chen Xu & Yi Wang & Xinzhong Zhang & Xuefeng Xu & Liyang Chen & Zhenhai Han & Ting Wu, 2023. "Pan-genome analysis of 13 Malus accessions reveals structural and sequence variations associated with fruit traits," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37004-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.