IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14061.html
   My bibliography  Save this article

Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast

Author

Listed:
  • Daniel C. Jeffares

    (Evolution and Environment, University College London
    UCL Genetics Institute, University College London
    Present address: Department of Biology, University of York, York YO105DD, UK)

  • Clemency Jolly

    (Evolution and Environment, University College London)

  • Mimoza Hoti

    (Evolution and Environment, University College London)

  • Doug Speed

    (UCL Genetics Institute, University College London)

  • Liam Shaw

    (Evolution and Environment, University College London
    UCL Genetics Institute, University College London)

  • Charalampos Rallis

    (Evolution and Environment, University College London
    UCL Genetics Institute, University College London
    Present address: School of Health, Sport and Biosciences, University of East London, London E15 4LZ, UK)

  • Francois Balloux

    (Evolution and Environment, University College London
    UCL Genetics Institute, University College London)

  • Christophe Dessimoz

    (Evolution and Environment, University College London
    University College London
    University of Lausanne
    Swiss Institute of Bioinformatics)

  • Jürg Bähler

    (Evolution and Environment, University College London
    UCL Genetics Institute, University College London)

  • Fritz J. Sedlazeck

    (Johns Hopkins University)

Abstract

Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases.

Suggested Citation

  • Daniel C. Jeffares & Clemency Jolly & Mimoza Hoti & Doug Speed & Liam Shaw & Charalampos Rallis & Francois Balloux & Christophe Dessimoz & Jürg Bähler & Fritz J. Sedlazeck, 2017. "Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast," Nature Communications, Nature, vol. 8(1), pages 1-11, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14061
    DOI: 10.1038/ncomms14061
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14061
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinhyun Kim & Sungsik Kim & Huiran Yeom & Seo Woo Song & Kyoungseob Shin & Sangwook Bae & Han Suk Ryu & Ji Young Kim & Ahyoun Choi & Sumin Lee & Taehoon Ryu & Yeongjae Choi & Hamin Kim & Okju Kim & Yu, 2023. "Barcoded multiple displacement amplification for high coverage sequencing in spatial genomics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Yichen Henry Liu & Can Luo & Staunton G. Golding & Jacob B. Ioffe & Xin Maizie Zhou, 2024. "Tradeoffs in alignment and assembly-based methods for structural variant detection with long-read sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Xiaoling Tong & Min-Jin Han & Kunpeng Lu & Shuaishuai Tai & Shubo Liang & Yucheng Liu & Hai Hu & Jianghong Shen & Anxing Long & Chengyu Zhan & Xin Ding & Shuo Liu & Qiang Gao & Bili Zhang & Linli Zhou, 2022. "High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. M. Mahmoud & Y. Huang & K. Garimella & P. A. Audano & W. Wan & N. Prasad & R. E. Handsaker & S. Hall & A. Pionzio & M. C. Schatz & M. E. Talkowski & E. E. Eichler & S. E. Levy & F. J. Sedlazeck, 2024. "Utility of long-read sequencing for All of Us," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Xuezhu Liao & Dejin Xie & Tingting Bao & Mengmeng Hou & Cheng Li & Bao Nie & Shichao Sun & Dan Peng & Haixiao Hu & Hongru Wang & Yongfu Tao & Yu Zhang & Wei Li & Li Wang, 2024. "Inversions encounter relaxed genetic constraints and balance birth and death of TPS genes in Curcuma," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Zeyu Zheng & Mingjia Zhu & Jin Zhang & Xinfeng Liu & Liqiang Hou & Wenyu Liu & Shuai Yuan & Changhong Luo & Xinhao Yao & Jianquan Liu & Yongzhi Yang, 2024. "A sequence-aware merger of genomic structural variations at population scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Manon Baudic & Hiroshige Murata & Fernanda M. Bosada & Uirá Souto Melo & Takanori Aizawa & Pierre Lindenbaum & Lieve E. Maarel & Amaury Guedon & Estelle Baron & Enora Fremy & Adrien Foucal & Taisuke I, 2024. "TAD boundary deletion causes PITX2-related cardiac electrical and structural defects," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Tuomas Hämälä & Christopher Moore & Laura Cowan & Matthew Carlile & David Gopaulchan & Marie K. Brandrud & Siri Birkeland & Matthew Loose & Filip Kolář & Marcus A. Koch & Levi Yant, 2024. "Impact of whole-genome duplications on structural variant evolution in Cochlearia," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Marsha M. Wheeler & Adrienne M. Stilp & Shuquan Rao & Bjarni V. Halldórsson & Doruk Beyter & Jia Wen & Anna V. Mihkaylova & Caitlin P. McHugh & John Lane & Min-Zhi Jiang & Laura M. Raffield & Goo Jun , 2022. "Whole genome sequencing identifies structural variants contributing to hematologic traits in the NHLBI TOPMed program," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Marta Isidro-Hernández & Ana Casado-García & Ninad Oak & Silvia Alemán-Arteaga & Belén Ruiz-Corzo & Jorge Martínez-Cano & Andrea Mayado & Elena G. Sánchez & Oscar Blanco & Ma Luisa Gaspar & Alberto Or, 2023. "Immune stress suppresses innate immune signaling in preleukemic precursor B-cells to provoke leukemia in predisposed mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Shravan Leonard-Murali & Chetana Bhaskarla & Ghanshyam S. Yadav & Sudeep K. Maurya & Chenna R. Galiveti & Joshua A. Tobin & Rachel J. Kann & Eishan Ashwat & Patrick S. Murphy & Anish B. Chakka & Visha, 2024. "Uveal melanoma immunogenomics predict immunotherapy resistance and susceptibility," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Naser Ansari-Pour & Yonglan Zheng & Toshio F. Yoshimatsu & Ayodele Sanni & Mustapha Ajani & Jean-Baptiste Reynier & Avraam Tapinos & Jason J. Pitt & Stefan Dentro & Anna Woodard & Padma Sheila Rajagop, 2021. "Whole-genome analysis of Nigerian patients with breast cancer reveals ethnic-driven somatic evolution and distinct genomic subtypes," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    13. Cristian Groza & Carl Schwendinger-Schreck & Warren A. Cheung & Emily G. Farrow & Isabelle Thiffault & Juniper Lake & William B. Rizzo & Gilad Evrony & Tom Curran & Guillaume Bourque & Tomi Pastinen, 2024. "Pangenome graphs improve the analysis of structural variants in rare genetic diseases," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Liyuan Zhou & Qiongzi Qiu & Qing Zhou & Jianwei Li & Mengqian Yu & Kezhen Li & Lingling Xu & Xiaohui Ke & Haiming Xu & Bingjian Lu & Hui Wang & Weiguo Lu & Pengyuan Liu & Yan Lu, 2022. "Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Can Luo & Yichen Henry Liu & Xin Maizie Zhou, 2024. "VolcanoSV enables accurate and robust structural variant calling in diploid genomes from single-molecule long read sequencing," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    16. Hongbo Li & Shenhao Wang & Sen Chai & Zhiquan Yang & Qiqi Zhang & Hongjia Xin & Yuanchao Xu & Shengnan Lin & Xinxiu Chen & Zhiwang Yao & Qingyong Yang & Zhangjun Fei & Sanwen Huang & Zhonghua Zhang, 2022. "Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Cristian Groza & Xun Chen & Travis J. Wheeler & Guillaume Bourque & Clément Goubert, 2024. "A unified framework to analyze transposable element insertion polymorphisms using graph genomes," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Yong Zhou & Zhichao Yu & Dmytro Chebotarov & Kapeel Chougule & Zhenyuan Lu & Luis F. Rivera & Nagarajan Kathiresan & Noor Al-Bader & Nahed Mohammed & Aseel Alsantely & Saule Mussurova & João Santos & , 2023. "Pan-genome inversion index reveals evolutionary insights into the subpopulation structure of Asian rice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Huiying He & Yue Leng & Xinglan Cao & Yiwang Zhu & Xiaoxia Li & Qiaoling Yuan & Bin Zhang & Wenchuang He & Hua Wei & Xiangpei Liu & Qiang Xu & Mingliang Guo & Hong Zhang & Longbo Yang & Yang Lv & Xian, 2024. "The pan-tandem repeat map highlights multiallelic variants underlying gene expression and agronomic traits in rice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Yingyan Yu & Zhen Zhang & Xiaorui Dong & Ruixin Yang & Zhongqu Duan & Zhen Xiang & Jun Li & Guichao Li & Fazhe Yan & Hongzhang Xue & Du Jiao & Jinyuan Lu & Huimin Lu & Wenmin Zhang & Yangzhen Wei & Sh, 2022. "Pangenomic analysis of Chinese gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.