IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36911-4.html
   My bibliography  Save this article

Two-step structural changes in M3 muscarinic receptor activation rely on the coupled Gq protein cycle

Author

Listed:
  • Yong-Seok Kim

    (Daegu Gyeongbuk Institute of Science and Technology (DGIST))

  • Jun-Hee Yeon

    (Daegu Gyeongbuk Institute of Science and Technology (DGIST))

  • Woori Ko

    (Daegu Gyeongbuk Institute of Science and Technology (DGIST))

  • Byung-Chang Suh

    (Daegu Gyeongbuk Institute of Science and Technology (DGIST))

Abstract

G protein-coupled receptors (GPCRs) regulate diverse intracellular signaling pathways through the activation of heterotrimeric G proteins. However, the effects of the sequential activation–deactivation cycle of G protein on the conformational changes of GPCRs remains unknown. By developing a Förster resonance energy transfer (FRET) tool for human M3 muscarinic receptor (hM3R), we find that a single-receptor FRET probe can display the consecutive structural conversion of a receptor by G protein cycle. Our results reveal that the G protein activation evokes a two-step change in the hM3R structure, including the fast step mediated by Gq protein binding and the subsequent slower step mediated by the physical separation of the Gαq and Gβγ subunits. We also find that the separated Gαq-GTP forms a stable complex with the ligand-activated hM3R and phospholipase Cβ. In sum, the present study uncovers the real-time conformational dynamics of innate hM3R during the downstream Gq protein cycle.

Suggested Citation

  • Yong-Seok Kim & Jun-Hee Yeon & Woori Ko & Byung-Chang Suh, 2023. "Two-step structural changes in M3 muscarinic receptor activation rely on the coupled Gq protein cycle," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36911-4
    DOI: 10.1038/s41467-023-36911-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36911-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36911-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew C. Kruse & Jianxin Hu & Albert C. Pan & Daniel H. Arlow & Daniel M. Rosenbaum & Erica Rosemond & Hillary F. Green & Tong Liu & Pil Seok Chae & Ron O. Dror & David E. Shaw & William I. Weis & Jü, 2012. "Structure and dynamics of the M3 muscarinic acetylcholine receptor," Nature, Nature, vol. 482(7386), pages 552-556, February.
    2. Yi-Lynn Liang & Maryam Khoshouei & Alisa Glukhova & Sebastian G. B. Furness & Peishen Zhao & Lachlan Clydesdale & Cassandra Koole & Tin T. Truong & David M. Thal & Saifei Lei & Mazdak Radjainia & Rado, 2018. "Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex," Nature, Nature, vol. 555(7694), pages 121-125, March.
    3. Tao Che & Justin English & Brian E. Krumm & Kuglae Kim & Els Pardon & Reid H. J. Olsen & Sheng Wang & Shicheng Zhang & Jeffrey F. Diberto & Noah Sciaky & F. Ivy Carroll & Jan Steyaert & Daniel Wacker , 2020. "Nanobody-enabled monitoring of kappa opioid receptor states," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Yi-Lynn Liang & Maryam Khoshouei & Mazdak Radjainia & Yan Zhang & Alisa Glukhova & Jeffrey Tarrasch & David M. Thal & Sebastian G. B. Furness & George Christopoulos & Thomas Coudrat & Radostin Danev &, 2017. "Phase-plate cryo-EM structure of a class B GPCR–G-protein complex," Nature, Nature, vol. 546(7656), pages 118-123, June.
    5. Titiwat Sungkaworn & Marie-Lise Jobin & Krzysztof Burnecki & Aleksander Weron & Martin J. Lohse & Davide Calebiro, 2017. "Single-molecule imaging reveals receptor–G protein interactions at cell surface hot spots," Nature, Nature, vol. 550(7677), pages 543-547, October.
    6. Catherine D. Van Raamsdonk & Vladimir Bezrookove & Gary Green & Jürgen Bauer & Lona Gaugler & Joan M. O’Brien & Elizabeth M. Simpson & Gregory S. Barsh & Boris C. Bastian, 2009. "Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi," Nature, Nature, vol. 457(7229), pages 599-602, January.
    7. A. J. Venkatakrishnan & Xavier Deupi & Guillaume Lebon & Franziska M. Heydenreich & Tilman Flock & Tamara Miljus & Santhanam Balaji & Michel Bouvier & Dmitry B. Veprintsev & Christopher G. Tate & Gebh, 2016. "Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region," Nature, Nature, vol. 536(7617), pages 484-487, August.
    8. Yan Zhang & Bingfa Sun & Dan Feng & Hongli Hu & Matthew Chu & Qianhui Qu & Jeffrey T. Tarrasch & Shane Li & Tong Sun Kobilka & Brian K. Kobilka & Georgios Skiniotis, 2017. "Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein," Nature, Nature, vol. 546(7657), pages 248-253, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-Hua Zhao & Jingyu Lin & Su-Yu Ji & X. Edward Zhou & Chunyou Mao & Dan-Dan Shen & Xinheng He & Peng Xiao & Jinpeng Sun & Karsten Melcher & Yan Zhang & Xiao Yu & H. Eric Xu, 2022. "Structure insights into selective coupling of G protein subtypes by a class B G protein-coupled receptor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Xudong Wang & Chris Neale & Soo-Kyung Kim & William A. Goddard & Libin Ye, 2023. "Intermediate-state-trapped mutants pinpoint G protein-coupled receptor conformational allostery," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Julien Bous & Julia Kinsolving & Lukas Grätz & Magdalena M. Scharf & Jan Hendrik Voss & Berkay Selcuk & Ogün Adebali & Gunnar Schulte, 2024. "Structural basis of frizzled 7 activation and allosteric regulation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Fenghui Zhao & Qingtong Zhou & Zhaotong Cong & Kaini Hang & Xinyu Zou & Chao Zhang & Yan Chen & Antao Dai & Anyi Liang & Qianqian Ming & Mu Wang & Li-Nan Chen & Peiyu Xu & Rulve Chang & Wenbo Feng & T, 2022. "Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Loch-Olszewska, Hanna, 2019. "Properties and distribution of the dynamical functional for the fractional Gaussian noise," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 252-271.
    6. Marie-Lise Jobin & Sana Siddig & Zsombor Koszegi & Yann Lanoiselée & Vladimir Khayenko & Titiwat Sungkaworn & Christian Werner & Kerstin Seier & Christin Misigaiski & Giovanna Mantovani & Markus Sauer, 2023. "Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Muszkieta, Monika & Janczura, Joanna, 2023. "A compressed sensing approach to interpolation of fractional Brownian trajectories for a single particle tracking experiment," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    8. Yosuke Toyoda & Angqi Zhu & Fang Kong & Sisi Shan & Jiawei Zhao & Nan Wang & Xiaoou Sun & Linqi Zhang & Chuangye Yan & Brian K. Kobilka & Xiangyu Liu, 2023. "Structural basis of α1A-adrenergic receptor activation and recognition by an extracellular nanobody," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Kaihua Zhang & Hao Wu & Nicholas Hoppe & Aashish Manglik & Yifan Cheng, 2022. "Fusion protein strategies for cryo-EM study of G protein-coupled receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Inês A. M. Barbosa & Rajaraman Gopalakrishnan & Samuele Mercan & Thanos P. Mourikis & Typhaine Martin & Simon Wengert & Caibin Sheng & Fei Ji & Rui Lopes & Judith Knehr & Marc Altorfer & Alicia Lindem, 2023. "Cancer lineage-specific regulation of YAP responsive elements revealed through large-scale functional epigenomic screens," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Xiuwen Zhai & Chunyou Mao & Qingya Shen & Shaokun Zang & Dan-Dan Shen & Huibing Zhang & Zhaohong Chen & Gang Wang & Changming Zhang & Yan Zhang & Zhihong Liu, 2022. "Molecular insights into the distinct signaling duration for the peptide-induced PTH1R activation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Sarah J. Piper & Giuseppe Deganutti & Jessica Lu & Peishen Zhao & Yi-Lynn Liang & Yao Lu & Madeleine M. Fletcher & Mohammed Akhter Hossain & Arthur Christopoulos & Christopher A. Reynolds & Radostin D, 2022. "Understanding VPAC receptor family peptide binding and selectivity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    13. Okrasińska-Płociniczak, Hanna & Płociniczak, Łukasz, 2022. "Second order scheme for self-similar solutions of a time-fractional porous medium equation on the half-line," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    14. Kaleeckal G. Harikumar & Sarah J. Piper & Arthur Christopoulos & Denise Wootten & Patrick M. Sexton & Laurence J. Miller, 2024. "Impact of secretin receptor homo-dimerization on natural ligand binding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Muszkieta, Monika & Janczura, Joanna & Weron, Aleksander, 2021. "Simulation and tracking of fractional particles motion. From microscopy video to statistical analysis. A Brownian bridge approach," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    16. Julia Ast & Daniela Nasteska & Nicholas H. F. Fine & Daniel J. Nieves & Zsombor Koszegi & Yann Lanoiselée & Federica Cuozzo & Katrina Viloria & Andrea Bacon & Nguyet T. Luu & Philip N. Newsome & David, 2023. "Revealing the tissue-level complexity of endogenous glucagon-like peptide-1 receptor expression and signaling," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Xueqian Peng & Linlin Yang & Zixuan Liu & Siyi Lou & Shiliu Mei & Meiling Li & Zhong Chen & Haitao Zhang, 2022. "Structural basis for recognition of antihistamine drug by human histamine receptor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Amal El Daibani & Joseph M. Paggi & Kuglae Kim & Yianni D. Laloudakis & Petr Popov & Sarah M. Bernhard & Brian E. Krumm & Reid H. J. Olsen & Jeffrey Diberto & F. Ivy Carroll & Vsevolod Katritch & Bern, 2023. "Molecular mechanism of biased signaling at the kappa opioid receptor," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Nathan Bénac & G. Ezequiel Saraceno & Corey Butler & Nahoko Kuga & Yuya Nishimura & Taiki Yokoi & Ping Su & Takuya Sasaki & Mar Petit-Pedrol & Rémi Galland & Vincent Studer & Fang Liu & Yuji Ikegaya &, 2024. "Non-canonical interplay between glutamatergic NMDA and dopamine receptors shapes synaptogenesis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    20. Na Wang & Xinheng He & Jing Zhao & Hualiang Jiang & Xi Cheng & Yu Xia & H. Eric Xu & Yuanzheng He, 2022. "Structural basis of leukotriene B4 receptor 1 activation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36911-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.