IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48853-6.html
   My bibliography  Save this article

Impact of secretin receptor homo-dimerization on natural ligand binding

Author

Listed:
  • Kaleeckal G. Harikumar

    (Mayo Clinic)

  • Sarah J. Piper

    (Monash University
    Monash University)

  • Arthur Christopoulos

    (Monash University
    Monash University)

  • Denise Wootten

    (Monash University
    Monash University)

  • Patrick M. Sexton

    (Monash University
    Monash University)

  • Laurence J. Miller

    (Mayo Clinic)

Abstract

Class B G protein-coupled receptors can form dimeric complexes important for high potency biological effects. Here, we apply pharmacological, biochemical, and biophysical techniques to cells and membranes expressing the prototypic secretin receptor (SecR) to gain insights into secretin binding to homo-dimeric and monomeric SecR. Spatial proximity between peptide and receptor residues, probed by disulfide bond formation, demonstrates that the secretin N-terminus moves from adjacent to extracellular loop 3 (ECL3) at wild type SecR toward ECL2 in non-dimerizing mutants. Analysis of fluorescent secretin analogs demonstrates stable engagement of the secretin C-terminal region within the receptor extracellular domain (ECD) for both dimeric and monomeric receptors, while the mid-region exhibits lower mobility while docked at the monomer. Moreover, decoupling of G protein interaction reduces mobility of the peptide mid-region at wild type receptor to levels similar to the mutant, whereas it has no further impact on the monomer. These data support a model of peptide engagement whereby the ability of SecR to dimerize promotes higher conformational dynamics of the peptide-bound receptor ECD and ECLs that likely facilitates more efficient G protein recruitment and activation, consistent with the higher observed functional potency of secretin at wild type SecR relative to the monomeric mutant receptor.

Suggested Citation

  • Kaleeckal G. Harikumar & Sarah J. Piper & Arthur Christopoulos & Denise Wootten & Patrick M. Sexton & Laurence J. Miller, 2024. "Impact of secretin receptor homo-dimerization on natural ligand binding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48853-6
    DOI: 10.1038/s41467-024-48853-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48853-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48853-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maoqing Dong & Giuseppe Deganutti & Sarah J. Piper & Yi-Lynn Liang & Maryam Khoshouei & Matthew J. Belousoff & Kaleeckal G. Harikumar & Christopher A. Reynolds & Alisa Glukhova & Sebastian G. B. Furne, 2020. "Structure and dynamics of the active Gs-coupled human secretin receptor," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    2. Yi-Lynn Liang & Maryam Khoshouei & Alisa Glukhova & Sebastian G. B. Furness & Peishen Zhao & Lachlan Clydesdale & Cassandra Koole & Tin T. Truong & David M. Thal & Saifei Lei & Mazdak Radjainia & Rado, 2018. "Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex," Nature, Nature, vol. 555(7694), pages 121-125, March.
    3. Yi-Lynn Liang & Maryam Khoshouei & Giuseppe Deganutti & Alisa Glukhova & Cassandra Koole & Thomas S. Peat & Mazdak Radjainia & Jürgen M. Plitzko & Wolfgang Baumeister & Laurence J. Miller & Deborah L., 2018. "Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor," Nature, Nature, vol. 561(7724), pages 492-497, September.
    4. Sarah J. Piper & Giuseppe Deganutti & Jessica Lu & Peishen Zhao & Yi-Lynn Liang & Yao Lu & Madeleine M. Fletcher & Mohammed Akhter Hossain & Arthur Christopoulos & Christopher A. Reynolds & Radostin D, 2022. "Understanding VPAC receptor family peptide binding and selectivity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Haonan Zhang & Anna Qiao & Dehua Yang & Linlin Yang & Antao Dai & Chris de Graaf & Steffen Reedtz-Runge & Venkatasubramanian Dharmarajan & Hui Zhang & Gye Won Han & Thomas D. Grant & Raymond G. Sierra, 2017. "Structure of the full-length glucagon class B G-protein-coupled receptor," Nature, Nature, vol. 546(7657), pages 259-264, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fenghui Zhao & Qingtong Zhou & Zhaotong Cong & Kaini Hang & Xinyu Zou & Chao Zhang & Yan Chen & Antao Dai & Anyi Liang & Qianqian Ming & Mu Wang & Li-Nan Chen & Peiyu Xu & Rulve Chang & Wenbo Feng & T, 2022. "Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Yingna Xu & Wenbo Feng & Qingtong Zhou & Anyi Liang & Jie Li & Antao Dai & Fenghui Zhao & Jiahui Yan & Chuan-Wei Chen & Hao Li & Li-Hua Zhao & Tian Xia & Yi Jiang & H. Eric Xu & Dehua Yang & Ming-Wei , 2022. "A distinctive ligand recognition mechanism by the human vasoactive intestinal polypeptide receptor 2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Li-Hua Zhao & Jingyu Lin & Su-Yu Ji & X. Edward Zhou & Chunyou Mao & Dan-Dan Shen & Xinheng He & Peng Xiao & Jinpeng Sun & Karsten Melcher & Yan Zhang & Xiao Yu & H. Eric Xu, 2022. "Structure insights into selective coupling of G protein subtypes by a class B G protein-coupled receptor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Xiuwen Zhai & Chunyou Mao & Qingya Shen & Shaokun Zang & Dan-Dan Shen & Huibing Zhang & Zhaohong Chen & Gang Wang & Changming Zhang & Yan Zhang & Zhihong Liu, 2022. "Molecular insights into the distinct signaling duration for the peptide-induced PTH1R activation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Sarah J. Piper & Giuseppe Deganutti & Jessica Lu & Peishen Zhao & Yi-Lynn Liang & Yao Lu & Madeleine M. Fletcher & Mohammed Akhter Hossain & Arthur Christopoulos & Christopher A. Reynolds & Radostin D, 2022. "Understanding VPAC receptor family peptide binding and selectivity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Mark J. Wall & Emily Hill & Robert Huckstepp & Kerry Barkan & Giuseppe Deganutti & Michele Leuenberger & Barbara Preti & Ian Winfield & Sabrina Carvalho & Anna Suchankova & Haifeng Wei & Dewi Safitri , 2022. "Selective activation of Gαob by an adenosine A1 receptor agonist elicits analgesia without cardiorespiratory depression," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    7. Xudong Wang & Chris Neale & Soo-Kyung Kim & William A. Goddard & Libin Ye, 2023. "Intermediate-state-trapped mutants pinpoint G protein-coupled receptor conformational allostery," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Tamaki Izume & Ryo Kawahara & Akiharu Uwamizu & Luying Chen & Shun Yaginuma & Jumpei Omi & Hiroki Kawana & Fengjue Hou & Fumiya K. Sano & Tatsuki Tanaka & Kazuhiro Kobayashi & Hiroyuki H. Okamoto & Yo, 2024. "Structural basis for lysophosphatidylserine recognition by GPR34," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Chaehee Park & Jinuk Kim & Seung-Bum Ko & Yeol Kyo Choi & Hyeongseop Jeong & Hyeonuk Woo & Hyunook Kang & Injin Bang & Sang Ah Kim & Tae-Young Yoon & Chaok Seok & Wonpil Im & Hee-Jung Choi, 2022. "Structural basis of neuropeptide Y signaling through Y1 receptor," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Kevin M. Knight & Brian E. Krumm & Nicholas J. Kapolka & W. Grant Ludlam & Meng Cui & Sepehr Mani & Iya Prytkova & Elizabeth G. Obarow & Tyler J. Lefevre & Wenyuan Wei & Ning Ma & Xi-Ping Huang & Jona, 2024. "A neurodevelopmental disorder mutation locks G proteins in the transitory pre-activated state," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Yong-Seok Kim & Jun-Hee Yeon & Woori Ko & Byung-Chang Suh, 2023. "Two-step structural changes in M3 muscarinic receptor activation rely on the coupled Gq protein cycle," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Yuxia Qian & Jiening Wang & Linlin Yang & Yanru Liu & Lina Wang & Wei Liu & Yun Lin & Hong Yang & Lixin Ma & Sheng Ye & Shan Wu & Anna Qiao, 2022. "Activation and signaling mechanism revealed by GPR119-Gs complex structures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48853-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.