IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36698-4.html
   My bibliography  Save this article

Singlet fission as a polarized spin generator for dynamic nuclear polarization

Author

Listed:
  • Yusuke Kawashima

    (Graduate School of Engineering)

  • Tomoyuki Hamachi

    (Graduate School of Engineering)

  • Akio Yamauchi

    (Graduate School of Engineering)

  • Koki Nishimura

    (Graduate School of Engineering)

  • Yuma Nakashima

    (Graduate School of Engineering)

  • Saiya Fujiwara

    (Graduate School of Engineering)

  • Nobuo Kimizuka

    (Graduate School of Engineering
    Center for Molecular Systems (CMS))

  • Tomohiro Ryu

    (Kyushu University)

  • Tetsu Tamura

    (Kyushu University)

  • Masaki Saigo

    (Kyushu University)

  • Ken Onda

    (Kyushu University)

  • Shunsuke Sato

    (Kitasato University)

  • Yasuhiro Kobori

    (Molecular Photoscience Research Center
    Kobe University)

  • Kenichiro Tateishi

    (RIKEN
    RIKEN Nishina Center for Accelerator-Based Science)

  • Tomohiro Uesaka

    (RIKEN
    RIKEN Nishina Center for Accelerator-Based Science)

  • Go Watanabe

    (Kitasato University
    Kanagawa Institute of Industrial Science and Technology (KISTEC))

  • Kiyoshi Miyata

    (Kyushu University)

  • Nobuhiro Yanai

    (Graduate School of Engineering
    Center for Molecular Systems (CMS)
    PRESTO, JST
    JST)

Abstract

Singlet fission (SF), converting a singlet excited state into a spin-correlated triplet-pair state, is an effective way to generate a spin quintet state in organic materials. Although its application to photovoltaics as an exciton multiplier has been extensively studied, the use of its unique spin degree of freedom has been largely unexplored. Here, we demonstrate that the spin polarization of the quintet multiexcitons generated by SF improves the sensitivity of magnetic resonance of water molecules through dynamic nuclear polarization (DNP). We form supramolecular assemblies of a few pentacene chromophores and use SF-born quintet spins to achieve DNP of water-glycerol, the most basic biological matrix, as evidenced by the dependence of nuclear polarization enhancement on magnetic field and microwave power. Our demonstration opens a use of SF as a polarized spin generator in bio-quantum technology.

Suggested Citation

  • Yusuke Kawashima & Tomoyuki Hamachi & Akio Yamauchi & Koki Nishimura & Yuma Nakashima & Saiya Fujiwara & Nobuo Kimizuka & Tomohiro Ryu & Tetsu Tamura & Masaki Saigo & Ken Onda & Shunsuke Sato & Yasuhi, 2023. "Singlet fission as a polarized spin generator for dynamic nuclear polarization," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36698-4
    DOI: 10.1038/s41467-023-36698-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36698-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36698-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroshi Nonaka & Ryunosuke Hata & Tomohiro Doura & Tatsuya Nishihara & Keiko Kumagai & Mai Akakabe & Masashi Tsuda & Kazuhiro Ichikawa & Shinsuke Sando, 2013. "A platform for designing hyperpolarized magnetic resonance chemical probes," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    2. M. A. Baldo & D. F. O'Brien & Y. You & A. Shoustikov & S. Sibley & M. E. Thompson & S. R. Forrest, 1998. "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, Nature, vol. 395(6698), pages 151-154, September.
    3. Daphné Lubert-Perquel & Enrico Salvadori & Matthew Dyson & Paul N. Stavrinou & Riccardo Montis & Hiroki Nagashima & Yasuhiro Kobori & Sandrine Heutz & Christopher W. M. Kay, 2018. "Identifying triplet pathways in dilute pentacene films," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun Kondo & Mana Kameyama & Kentaro Imaoka & Yoko Shimoi & Fabrice Mathevet & Takashi Fujihara & Hiroshi Goto & Hajime Nakanotani & Masayuki Yahiro & Chihaya Adachi, 2024. "Organic thermoelectric device utilizing charge transfer interface as the charge generation by harvesting thermal energy," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Ryan D. Dill & Kori E. Smyser & Brandon K. Rugg & Niels H. Damrauer & Joel D. Eaves, 2023. "Entangled spin-polarized excitons from singlet fission in a rigid dimer," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Jaewook Kim & Joonghyuk Kim & Yongjun Kim & Youngmok Son & Youngsik Shin & Hye Jin Bae & Ji Whan Kim & Sungho Nam & Yongsik Jung & Hyeonsu Kim & Sungwoo Kang & Yoonsoo Jung & Kyunghoon Lee & Hyeonho C, 2023. "Critical role of electrons in the short lifetime of blue OLEDs," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Guiying He & Emily M. Churchill & Kaia R. Parenti & Jocelyn Zhang & Pournima Narayanan & Faridah Namata & Michael Malkoch & Daniel N. Congreve & Angelo Cacciuto & Matthew Y. Sfeir & Luis M. Campos, 2023. "Promoting multiexciton interactions in singlet fission and triplet fusion upconversion dendrimers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Nan Zhang & Lei Qu & Shuheng Dai & Guohua Xie & Chunmiao Han & Jing Zhang & Ran Huo & Huan Hu & Qiushui Chen & Wei Huang & Hui Xu, 2023. "Intramolecular charge transfer enables highly-efficient X-ray luminescence in cluster scintillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Xiao Tan & Dehai Dou & Lay-Lay Chua & Rui-Qi Png & Daniel G. Congrave & Hugo Bronstein & Martin Baumgarten & Yungui Li & Paul W. M. Blom & Gert-Jan A. H. Wetzelaer, 2024. "Inverted device architecture for high efficiency single-layer organic light-emitting diodes with imbalanced charge transport," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Pode, Ramchandra, 2020. "Organic light emitting diode devices: An energy efficient solid state lighting for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Xiaokang Yao & Yuxin Li & Huifang Shi & Ze Yu & Beishen Wu & Zixing Zhou & Chifeng Zhou & Xifang Zheng & Mengting Tang & Xiao Wang & Huili Ma & Zhengong Meng & Wei Huang & Zhongfu An, 2024. "Narrowband room temperature phosphorescence of closed-loop molecules through the multiple resonance effect," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Yan Fu & Hao Liu & Ben Zhong Tang & Zujin Zhao, 2023. "Realizing efficient blue and deep-blue delayed fluorescence materials with record-beating electroluminescence efficiencies of 43.4%," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Guoyun Meng & Hengyi Dai & Qi Wang & Jianping Zhou & Tianjiao Fan & Xuan Zeng & Xiang Wang & Yuewei Zhang & Dezhi Yang & Dongge Ma & Dongdong Zhang & Lian Duan, 2023. "High-efficiency and stable short-delayed fluorescence emitters with hybrid long- and short-range charge-transfer excitations," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Nilabja Maity & Woojae Kim & Naitik A. Panjwani & Arup Kundu & Kanad Majumder & Pranav Kasetty & Divji Mishra & Robert Bittl & Jayashree Nagesh & Jyotishman Dasgupta & Andrew J. Musser & Satish Patil, 2022. "Parallel triplet formation pathways in a singlet fission material," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Christian Hintze & Tobias O Morgen & Malte Drescher, 2017. "Heavy-atom effect on optically excited triplet state kinetics," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36698-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.