IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37687-3.html
   My bibliography  Save this article

Realizing efficient blue and deep-blue delayed fluorescence materials with record-beating electroluminescence efficiencies of 43.4%

Author

Listed:
  • Yan Fu

    (South China University of Technology)

  • Hao Liu

    (South China University of Technology)

  • Ben Zhong Tang

    (The Chinese University of Hong Kong, Shenzhen)

  • Zujin Zhao

    (South China University of Technology)

Abstract

As promising luminescent materials for organic light-emitting diodes (OLEDs), thermally activated delayed fluorescence materials are booming vigorously in recent years, but robust blue ones still remain challenging. Herein, we report three highly efficient blue and deep-blue delayed fluorescence materials comprised of a weak electron acceptor chromeno[3,2-c]carbazol-8(5H)-one with a rigid polycyclic structure and a weak electron donor spiro[acridine-9,9’-xanthene]. They hold distinguished merits of excellent photoluminescence quantum yields (99%), ultrahigh horizontal transition dipole ratios (93.6%), and fast radiative transition and reverse intersystem crossing, which furnish superb blue and deep-blue electroluminescence with Commission Internationale de I’Eclairage coordinates (CIEx,y) of (0.14, 0.18) and (0.14, 0.15) and record-beating external quantum efficiencies (ηexts) of 43.4% and 41.3%, respectively. Their efficiency roll-offs are successfully reduced by suppressing triplet-triplet and singlet-singlet annihilations. Moreover, high-performance deep-blue and green hyperfluorescence OLEDs are achieved by utilizing these materials as sensitizers for multi-resonance delayed fluorescence dopants, providing state-of-the-art ηexts of 32.5% (CIEx,y = 0.14, 0.10) and 37.6% (CIEx,y = 0.32, 0.64), respectively, as well as greatly advanced operational lifetimes. These splendid results can surely inspire the development of blue and deep-blue luminescent materials and devices.

Suggested Citation

  • Yan Fu & Hao Liu & Ben Zhong Tang & Zujin Zhao, 2023. "Realizing efficient blue and deep-blue delayed fluorescence materials with record-beating electroluminescence efficiencies of 43.4%," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37687-3
    DOI: 10.1038/s41467-023-37687-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37687-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37687-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. A. Baldo & D. F. O'Brien & Y. You & A. Shoustikov & S. Sibley & M. E. Thompson & S. R. Forrest, 1998. "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, Nature, vol. 395(6698), pages 151-154, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaewook Kim & Joonghyuk Kim & Yongjun Kim & Youngmok Son & Youngsik Shin & Hye Jin Bae & Ji Whan Kim & Sungho Nam & Yongsik Jung & Hyeonsu Kim & Sungwoo Kang & Yoonsoo Jung & Kyunghoon Lee & Hyeonho C, 2023. "Critical role of electrons in the short lifetime of blue OLEDs," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Nan Zhang & Lei Qu & Shuheng Dai & Guohua Xie & Chunmiao Han & Jing Zhang & Ran Huo & Huan Hu & Qiushui Chen & Wei Huang & Hui Xu, 2023. "Intramolecular charge transfer enables highly-efficient X-ray luminescence in cluster scintillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Xiao Tan & Dehai Dou & Lay-Lay Chua & Rui-Qi Png & Daniel G. Congrave & Hugo Bronstein & Martin Baumgarten & Yungui Li & Paul W. M. Blom & Gert-Jan A. H. Wetzelaer, 2024. "Inverted device architecture for high efficiency single-layer organic light-emitting diodes with imbalanced charge transport," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Pode, Ramchandra, 2020. "Organic light emitting diode devices: An energy efficient solid state lighting for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Xiaokang Yao & Yuxin Li & Huifang Shi & Ze Yu & Beishen Wu & Zixing Zhou & Chifeng Zhou & Xifang Zheng & Mengting Tang & Xiao Wang & Huili Ma & Zhengong Meng & Wei Huang & Zhongfu An, 2024. "Narrowband room temperature phosphorescence of closed-loop molecules through the multiple resonance effect," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Yusuke Kawashima & Tomoyuki Hamachi & Akio Yamauchi & Koki Nishimura & Yuma Nakashima & Saiya Fujiwara & Nobuo Kimizuka & Tomohiro Ryu & Tetsu Tamura & Masaki Saigo & Ken Onda & Shunsuke Sato & Yasuhi, 2023. "Singlet fission as a polarized spin generator for dynamic nuclear polarization," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Guoyun Meng & Hengyi Dai & Qi Wang & Jianping Zhou & Tianjiao Fan & Xuan Zeng & Xiang Wang & Yuewei Zhang & Dezhi Yang & Dongge Ma & Dongdong Zhang & Lian Duan, 2023. "High-efficiency and stable short-delayed fluorescence emitters with hybrid long- and short-range charge-transfer excitations," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Christian Hintze & Tobias O Morgen & Malte Drescher, 2017. "Heavy-atom effect on optically excited triplet state kinetics," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37687-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.