Asymmetric activity of NetrinB controls laterality of the Drosophila brain
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-36644-4
Download full text from publisher
References listed on IDEAS
- Shunya Hozumi & Reo Maeda & Kiichiro Taniguchi & Maiko Kanai & Syuichi Shirakabe & Takeshi Sasamura & Pauline Spéder & Stéphane Noselli & Toshiro Aigaki & Ryutaro Murakami & Kenji Matsuno, 2006. "An unconventional myosin in Drosophila reverses the default handedness in visceral organs," Nature, Nature, vol. 440(7085), pages 798-802, April.
- Alberto Pascual & Kai-Lian Huang & Julie Neveu & Thomas Préat, 2004. "Brain asymmetry and long-term memory," Nature, Nature, vol. 427(6975), pages 605-606, February.
- Pauline Spéder & Géza Ádám & Stéphane Noselli, 2006. "Type ID unconventional myosin controls left–right asymmetry in Drosophila," Nature, Nature, vol. 440(7085), pages 803-807, April.
- Chloé Dominici & Juan Antonio Moreno-Bravo & Sergi Roig Puiggros & Quentin Rappeneau & Nicolas Rama & Pauline Vieugue & Agns Bernet & Patrick Mehlen & Alain Chédotal, 2017. "Floor-plate-derived netrin-1 is dispensable for commissural axon guidance," Nature, Nature, vol. 545(7654), pages 350-354, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Akshai Janardhana Kurup & Florian Bailet & Maximilian Fürthauer, 2024. "Myosin1G promotes Nodal signaling to control zebrafish left-right asymmetry," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Yee Han Tee & Wei Jia Goh & Xianbin Yong & Hui Ting Ong & Jinrong Hu & Ignacius Yan Yun Tay & Shidong Shi & Salma Jalal & Samuel F. H. Barnett & Pakorn Kanchanawong & Wenmao Huang & Jie Yan & Yong Ann, 2023. "Actin polymerisation and crosslinking drive left-right asymmetry in single cell and cell collectives," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36644-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.