IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v415y2002i6868d10.1038_415165a.html
   My bibliography  Save this article

Dynamic coding of behaviourally relevant stimuli in parietal cortex

Author

Listed:
  • Louis J. Toth

    (Harvard Medical School)

  • John A. Assad

    (Harvard Medical School)

Abstract

A general function of cerebral cortex is to allow the flexible association of sensory stimuli with specific behaviours. Many neurons in parietal1,2, prefrontal3,4 and motor5,6,7 cortical areas are activated both by particular movements and by sensory cues that trigger these movements, suggesting a role in linking sensation to action. For example, neurons in the lateral intraparietal area (LIP) encode both the location of visual stimuli and the direction of saccadic eye movements8,9. LIP is not believed to encode non-spatial stimulus attributes such as colour10,11. Here we investigated whether LIP would encode colour if colour was behaviourally linked to the eye movement. We trained monkeys to make an eye movement in one of two directions based alternately on the colour or location of a visual cue. When cue colour was relevant for directing eye movement, we found a substantial fraction of LIP neurons selective for cue colour. However, when cue location was relevant, colour selectivity was virtually absent in LIP. These results demonstrate that selectivity of cortical neurons can change as a function of the required behaviour.

Suggested Citation

  • Louis J. Toth & John A. Assad, 2002. "Dynamic coding of behaviourally relevant stimuli in parietal cortex," Nature, Nature, vol. 415(6868), pages 165-168, January.
  • Handle: RePEc:nat:nature:v:415:y:2002:i:6868:d:10.1038_415165a
    DOI: 10.1038/415165a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/415165a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/415165a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhewei Zhang & Chaoqun Yin & Tianming Yang, 2022. "Evidence accumulation occurs locally in the parietal cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6868:d:10.1038_415165a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.