IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36448-6.html
   My bibliography  Save this article

Electroacupuncture improves swallowing function in a post-stroke dysphagia mouse model by activating the motor cortex inputs to the nucleus tractus solitarii through the parabrachial nuclei

Author

Listed:
  • Lulu Yao

    (Guangzhou University of Chinese Medicine)

  • Qiuping Ye

    (Guangzhou University of Chinese Medicine
    Sun Yat-sen University)

  • Yun Liu

    (Guangzhou University of Chinese Medicine
    China Academy of Chinese Medical Sciences)

  • Shuqi Yao

    (Guangzhou University of Chinese Medicine)

  • Si Yuan

    (Guangzhou University of Chinese Medicine)

  • Qin Xu

    (Guangzhou University of Chinese Medicine)

  • Bing Deng

    (Guangzhou University of Chinese Medicine)

  • Xiaorong Tang

    (Guangzhou University of Chinese Medicine)

  • Jiahui Shi

    (Guangzhou University of Chinese Medicine)

  • Jianyu Luo

    (Guangzhou University of Chinese Medicine)

  • Junshang Wu

    (Guangzhou University of Chinese Medicine)

  • Zhennan Wu

    (Guangzhou University of Chinese Medicine)

  • Jianhua Liu

    (Guangzhou University of Chinese Medicine
    The Second Affiliated Hospital of Guangzhou University of Chinese Medicine)

  • Chunzhi Tang

    (Guangzhou University of Chinese Medicine)

  • Lin Wang

    (Guangzhou University of Chinese Medicine)

  • Nenggui Xu

    (Guangzhou University of Chinese Medicine)

Abstract

As a traditional medical therapy, stimulation at the Lianquan (CV23) acupoint, located at the depression superior to the hyoid bone, has been shown to be beneficial in dysphagia. However, little is known about the neurological mechanism by which this peripheral stimulation approach treats for dysphagia. Here, we first identified a cluster of excitatory neurons in layer 5 (L5) of the primary motor cortex (M1) that can regulate swallowing function in male mice by modulating mylohyoid activity. Moreover, we found that focal ischemia in the M1 mimicked the post-stroke dysphagia (PSD) pathology, as indicated by impaired water consumption and electromyographic responses in the mylohyoid. This dysfunction could be rescued by electroacupuncture (EA) stimulation at the CV23 acupoint (EA-CV23) in a manner dependent on the excitatory neurons in the contralateral M1 L5. Furthermore, neuronal activation in both the parabrachial nuclei (PBN) and nucleus tractus solitarii (NTS), which was modulated by the M1, was required for the ability of EA-CV23 treatment to improve swallowing function in male PSD model mice. Together, these results uncover the importance of the M1-PBN-NTS neural circuit in driving the protective effect of EA-CV23 against swallowing dysfunction and thus reveal a potential strategy for dysphagia intervention.

Suggested Citation

  • Lulu Yao & Qiuping Ye & Yun Liu & Shuqi Yao & Si Yuan & Qin Xu & Bing Deng & Xiaorong Tang & Jiahui Shi & Jianyu Luo & Junshang Wu & Zhennan Wu & Jianhua Liu & Chunzhi Tang & Lin Wang & Nenggui Xu, 2023. "Electroacupuncture improves swallowing function in a post-stroke dysphagia mouse model by activating the motor cortex inputs to the nucleus tractus solitarii through the parabrachial nuclei," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36448-6
    DOI: 10.1038/s41467-023-36448-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36448-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36448-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Massimo Scanziani & Michael Häusser, 2009. "Electrophysiology in the age of light," Nature, Nature, vol. 461(7266), pages 930-939, October.
    2. Xu Zhang & Bo Lei & Yuan Yuan & Li Zhang & Lu Hu & Sen Jin & Bilin Kang & Xuebin Liao & Wenzhi Sun & Fuqiang Xu & Yi Zhong & Ji Hu & Hai Qi, 2020. "Brain control of humoral immune responses amenable to behavioural modulation," Nature, Nature, vol. 581(7807), pages 204-208, May.
    3. Yi Li & Weixin Zhong & Daqing Wang & Qiru Feng & Zhixiang Liu & Jingfeng Zhou & Chunying Jia & Fei Hu & Jiawei Zeng & Qingchun Guo & Ling Fu & Minmin Luo, 2016. "Serotonin neurons in the dorsal raphe nucleus encode reward signals," Nature Communications, Nature, vol. 7(1), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuancheng Ren & Cai Zhang & Faguo Yue & Jinxiang Tang & Wei Zhang & Yue Zheng & Yuanyuan Fang & Na Wang & Zhenbo Song & Zehui Zhang & Xiaolong Zhang & Han Qin & Yaling Wang & Jianxia Xia & Chenggang , 2024. "A midbrain GABAergic circuit constrains wakefulness in a mouse model of stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Qingtao Sun & Daniëlle Lisdonk & Miriam Ferrer & Bruno Gegenhuber & Melody Wu & Youngkyu Park & David A. Tuveson & Jessica Tollkuhn & Tobias Janowitz & Bo Li, 2024. "Area postrema neurons mediate interleukin-6 function in cancer cachexia," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Hiroyuki Kawai & Youcef Bouchekioua & Naoya Nishitani & Kazuhei Niitani & Shoma Izumi & Hinako Morishita & Chihiro Andoh & Yuma Nagai & Masashi Koda & Masako Hagiwara & Koji Toda & Hisashi Shirakawa &, 2022. "Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    4. Lan Yan & Fengzhen Yang & Yajie Wang & Lingling Shi & Mei Wang & Diran Yang & Wenjing Wang & Yanbin Jia & Kwok-Fai So & Li Zhang, 2024. "Stress increases hepatic release of lipocalin 2 which contributes to anxiety-like behavior in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Ruth R. Sims & Imane Bendifallah & Christiane Grimm & Aysha S. Mohamed Lafirdeen & Soledad Domínguez & Chung Yuen Chan & Xiaoyu Lu & Benoît C. Forget & François St-Pierre & Eirini Papagiakoumou & Vale, 2024. "Scanless two-photon voltage imaging," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Qingtao Sun & Jianping Zhang & Anan Li & Mei Yao & Guangcai Liu & Siqi Chen & Yue Luo & Zhi Wang & Hui Gong & Xiangning Li & Qingming Luo, 2022. "Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    7. Dong-Dong Shi & Ying-Dan Zhang & Sen Zhang & Bing-Bing Liao & Min-Yi Chu & Shanshan Su & Kaiming Zhuo & Hao Hu & Chen Zhang & Zhen Wang, 2023. "Stress-induced red nucleus attenuation induces anxiety-like behavior and lymph node CCL5 secretion," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Huanyuan Zhou & KongFatt Wong-Lin & Da-Hui Wang, 2018. "Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses," Complexity, Hindawi, vol. 2018, pages 1-20, April.
    9. Diane Aguilar & Fengli Zhu & Antoine Millet & Nicolas Millet & Patrizia Germano & Joseph Pisegna & Omid Akbari & Taylor A. Doherty & Marc Swidergall & Nicholas Jendzjowsky, 2024. "Sensory neurons regulate stimulus-dependent humoral immunity in mouse models of bacterial infection and asthma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Weiwei Guo & Sijia Fan & Dan Xiao & Hui Dong & Guangwei Xu & Zhikun Wan & Yuqian Ma & Zhen Wang & Tian Xue & Yifeng Zhou & Yulong Li & Wei Xiong, 2021. "A Brainstem reticulotegmental neural ensemble drives acoustic startle reflexes," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. Lizhu Li & Lihui Lu & Yuqi Ren & Guo Tang & Yu Zhao & Xue Cai & Zhao Shi & He Ding & Changbo Liu & Dali Cheng & Yang Xie & Huachun Wang & Xin Fu & Lan Yin & Minmin Luo & Xing Sheng, 2022. "Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Weihua Ding & Liuyue Yang & Eleanor Shi & Bowon Kim & Sarah Low & Kun Hu & Lei Gao & Ping Chen & Wei Ding & David Borsook & Andrew Luo & Jee Hyun Choi & Changning Wang & Oluwaseun Akeju & Jun Yang & C, 2023. "The endocannabinoid N-arachidonoyl dopamine is critical for hyperalgesia induced by chronic sleep disruption," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Li Shen & Guang-Wei Zhang & Can Tao & Michelle B. Seo & Nicole K. Zhang & Junxiang J. Huang & Li I. Zhang & Huizhong W. Tao, 2022. "A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Jing Huang & Weijun Huang & Junzhe Yi & Yiwen Deng & Ruijie Li & Jieying Chen & Jiahao Shi & Yuan Qiu & Tao Wang & Xiaoyong Chen & Xiaoran Zhang & Andy Peng Xiang, 2023. "Mesenchymal stromal cells alleviate depressive and anxiety-like behaviors via a lung vagal-to-brain axis in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Hiro Taiyo Hamada & Yoshifumi Abe & Norio Takata & Masakazu Taira & Kenji F. Tanaka & Kenji Doya, 2024. "Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Yan Zhang & Jiayi Shen & Famin Xie & Zhiwei Liu & Fangfang Yin & Mingxiu Cheng & Liang Wang & Meiting Cai & Herbert Herzog & Ping Wu & Zhi Zhang & Cheng Zhan & Tiemin Liu, 2024. "Feedforward inhibition of stress by brainstem neuropeptide Y neurons," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Seth R. Batten & Dan Bang & Brian H. Kopell & Arianna N. Davis & Matthew Heflin & Qixiu Fu & Ofer Perl & Kimia Ziafat & Alice Hashemi & Ignacio Saez & Leonardo S. Barbosa & Thomas Twomey & Terry Lohre, 2024. "Dopamine and serotonin in human substantia nigra track social context and value signals during economic exchange," Nature Human Behaviour, Nature, vol. 8(4), pages 718-728, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36448-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.