IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47266-9.html
   My bibliography  Save this article

Stress increases hepatic release of lipocalin 2 which contributes to anxiety-like behavior in mice

Author

Listed:
  • Lan Yan

    (Jinan University)

  • Fengzhen Yang

    (Jinan University)

  • Yajie Wang

    (Jinan University)

  • Lingling Shi

    (Jinan University)

  • Mei Wang

    (Jinan University)

  • Diran Yang

    (Jinan University)

  • Wenjing Wang

    (Jinan University)

  • Yanbin Jia

    (Jinan University
    Jinan University)

  • Kwok-Fai So

    (Jinan University
    Jinan University
    The University of Hong Kong
    Guangdong-Hong Kong-Macao Greater Bay Area)

  • Li Zhang

    (Jinan University
    Jinan University
    Guangdong-Hong Kong-Macao Greater Bay Area
    University of Health and Rehabilitation Sciences)

Abstract

Chronic stress induces anxiety disorders via both neural pathways and circulating factors. Although many studies have elucidated the neural circuits involved in stress-coping behaviors, the origin and regulatory mechanism of peripheral cytokines in behavioural regulation under stress conditions are not fully understood. Here, we identified a serum cytokine, lipocalin 2 (LCN2), that was upregulated in participants with anxiety disorders. Using a mouse model of chronic restraint stress (CRS), circulating LCN2 was found to be related to stress-induced anxiety-like behaviour via modulation of neural activity in the medial prefrontal cortex (mPFC). These results suggest that stress increases hepatic LCN2 via a neural pathway, leading to disrupted cortical functions and behaviour.

Suggested Citation

  • Lan Yan & Fengzhen Yang & Yajie Wang & Lingling Shi & Mei Wang & Diran Yang & Wenjing Wang & Yanbin Jia & Kwok-Fai So & Li Zhang, 2024. "Stress increases hepatic release of lipocalin 2 which contributes to anxiety-like behavior in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47266-9
    DOI: 10.1038/s41467-024-47266-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47266-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47266-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ioanna Mosialou & Steven Shikhel & Jian-Min Liu & Antonio Maurizi & Na Luo & Zhenyan He & Yiru Huang & Haihong Zong & Richard A. Friedman & Jonathan Barasch & Patricia Lanzano & Liyong Deng & Rudolph , 2017. "MC4R-dependent suppression of appetite by bone-derived lipocalin 2," Nature, Nature, vol. 543(7645), pages 385-390, March.
    2. Xu Zhang & Bo Lei & Yuan Yuan & Li Zhang & Lu Hu & Sen Jin & Bilin Kang & Xuebin Liao & Wenzhi Sun & Fuqiang Xu & Yi Zhong & Ji Hu & Hai Qi, 2020. "Brain control of humoral immune responses amenable to behavioural modulation," Nature, Nature, vol. 581(7807), pages 204-208, May.
    3. Jason S. Snyder & Amélie Soumier & Michelle Brewer & James Pickel & Heather A. Cameron, 2011. "Adult hippocampal neurogenesis buffers stress responses and depressive behaviour," Nature, Nature, vol. 476(7361), pages 458-461, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingtao Sun & Daniëlle Lisdonk & Miriam Ferrer & Bruno Gegenhuber & Melody Wu & Youngkyu Park & David A. Tuveson & Jessica Tollkuhn & Tobias Janowitz & Bo Li, 2024. "Area postrema neurons mediate interleukin-6 function in cancer cachexia," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Diane Aguilar & Fengli Zhu & Antoine Millet & Nicolas Millet & Patrizia Germano & Joseph Pisegna & Omid Akbari & Taylor A. Doherty & Marc Swidergall & Nicholas Jendzjowsky, 2024. "Sensory neurons regulate stimulus-dependent humoral immunity in mouse models of bacterial infection and asthma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Nicole Eichert & Jordan DeKraker & Amy F. D. Howard & Istvan N. Huszar & Silei Zhu & Jérôme Sallet & Karla L. Miller & Rogier B. Mars & Saad Jbabdi & Boris C. Bernhardt, 2024. "Hippocampal connectivity patterns echo macroscale cortical evolution in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Liang Fang & Chanjuan Zhou & Shunjie Bai & Chenglong Huang & Junxi Pan & Ling Wang & Xinfa Wang & Qiang Mao & Lu Sun & Peng Xie, 2015. "The C825T Polymorphism of the G-Protein β3 Gene as a Risk Factor for Depression: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-11, July.
    5. Masayuki Kikkawa & Akiyoshi Shimura & Kazuki Nakajima & Chihiro Morishita & Mina Honyashiki & Yu Tamada & Shinji Higashi & Masahiko Ichiki & Takeshi Inoue & Jiro Masuya, 2023. "Mediating Effects of Trait Anxiety and State Anxiety on the Effects of Physical Activity on Depressive Symptoms," IJERPH, MDPI, vol. 20(7), pages 1-12, March.
    6. Reidun Aesoy & Haruna Muwonge & Kathrine S Asrud & Misbah Sabir & Solveig L Witsoe & Ronja Bjornstad & Reidun K Kopperud & Erling A Hoivik & Stein Ove Doskeland & Marit Bakke, 2018. "Deletion of exchange proteins directly activated by cAMP (Epac) causes defects in hippocampal signaling in female mice," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-25, July.
    7. James O Groves & Isla Leslie & Guo-Jen Huang & Stephen B McHugh & Amy Taylor & Richard Mott & Marcus Munafò & David M Bannerman & Jonathan Flint, 2013. "Ablating Adult Neurogenesis in the Rat Has No Effect on Spatial Processing: Evidence from a Novel Pharmacogenetic Model," PLOS Genetics, Public Library of Science, vol. 9(9), pages 1-16, September.
    8. Dong-Dong Shi & Ying-Dan Zhang & Sen Zhang & Bing-Bing Liao & Min-Yi Chu & Shanshan Su & Kaiming Zhuo & Hao Hu & Chen Zhang & Zhen Wang, 2023. "Stress-induced red nucleus attenuation induces anxiety-like behavior and lymph node CCL5 secretion," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Zan Li & Baohong Shi & Na Li & Jun Sun & Xiangchen Zeng & Rui Huang & Seoyeon Bok & Xiaohui Chen & Jie Han & Alisha R. Yallowitz & Shawon Debnath & Michelle Cung & Zheng Ling & Chuan-Qi Zhong & Yixang, 2024. "Bone controls browning of white adipose tissue and protects from diet-induced obesity through Schnurri-3-regulated SLIT2 secretion," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47266-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.