IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36304-7.html
   My bibliography  Save this article

A conformational switch in clathrin light chain regulates lattice structure and endocytosis at the plasma membrane of mammalian cells

Author

Listed:
  • Kazuki Obashi

    (National Institutes of Health)

  • Kem A. Sochacki

    (National Institutes of Health)

  • Marie-Paule Strub

    (National Institutes of Health)

  • Justin W. Taraska

    (National Institutes of Health)

Abstract

Conformational changes in endocytic proteins are regulators of clathrin-mediated endocytosis. Three clathrin heavy chains associated with clathrin light chains (CLC) assemble into triskelia that link into a geometric lattice that curves to drive endocytosis. Structural changes in CLC have been shown to regulate triskelia assembly in solution, yet the nature of these changes, and their effects on lattice growth, curvature, and endocytosis in cells are unknown. Here, we develop a new correlative fluorescence resonance energy transfer (FRET) and platinum replica electron microscopy method, named FRET-CLEM. With FRET-CLEM, we measure conformational changes in clathrin at thousands of individual morphologically distinct clathrin-coated structures. We discover that the N-terminus of CLC repositions away from the plasma membrane and triskelia vertex as coats curve. Preventing this conformational switch with chemical tools increases lattice sizes and inhibits endocytosis. Thus, a specific conformational switch in the light chain regulates lattice curvature and endocytosis in mammalian cells.

Suggested Citation

  • Kazuki Obashi & Kem A. Sochacki & Marie-Paule Strub & Justin W. Taraska, 2023. "A conformational switch in clathrin light chain regulates lattice structure and endocytosis at the plasma membrane of mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36304-7
    DOI: 10.1038/s41467-023-36304-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36304-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36304-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bijeta Prasai & Gideon J. Haber & Marie-Paule Strub & Regina Ahn & John A. Ciemniecki & Kem A. Sochacki & Justin W. Taraska, 2021. "The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Baron Chanda & Osei Kwame Asamoah & Rikard Blunck & Benoît Roux & Francisco Bezanilla, 2005. "Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement," Nature, Nature, vol. 436(7052), pages 852-856, August.
    3. Brandon L. Scott & Kem A. Sochacki & Shalini T. Low-Nam & Elizabeth M. Bailey & QuocAhn Luu & Amy Hor & Andrea M. Dickey & Steve Smith & Jason G. Kerkvliet & Justin W. Taraska & Adam D. Hoppe, 2018. "Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Alexander Fotin & Yifan Cheng & Piotr Sliz & Nikolaus Grigorieff & Stephen C. Harrison & Tomas Kirchhausen & Thomas Walz, 2004. "Molecular model for a complete clathrin lattice from electron cryomicroscopy," Nature, Nature, vol. 432(7017), pages 573-579, December.
    5. Nicholas I. Clarke & Stephen J. Royle, 2018. "FerriTag is a new genetically-encoded inducible tag for correlative light-electron microscopy," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    6. Stéphane Vassilopoulos & Solène Gibaud & Angélique Jimenez & Ghislaine Caillol & Christophe Leterrier, 2019. "Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    7. Delia Bucher & Felix Frey & Kem A. Sochacki & Susann Kummer & Jan-Philip Bergeest & William J. Godinez & Hans-Georg Kräusslich & Karl Rohr & Justin W. Taraska & Ulrich S. Schwarz & Steeve Boulant, 2018. "Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    8. Matteo Biancospino & Gwen R. Buel & Carlos A. Niño & Elena Maspero & Rossella Scotto di Perrotolo & Andrea Raimondi & Lisa Redlingshöfer & Janine Weber & Frances M. Brodsky & Kylie J. Walters & Simona, 2019. "Clathrin light chain A drives selective myosin VI recruitment to clathrin-coated pits under membrane tension," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changsong Yang & Patricia Colosi & Siewert Hugelier & Daniel Zabezhinsky & Melike Lakadamyali & Tatyana Svitkina, 2022. "Actin polymerization promotes invagination of flat clathrin-coated lattices in mammalian cells by pushing at lattice edges," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Tomasz J. Nawara & Yancey D. Williams & Tejeshwar C. Rao & Yuesong Hu & Elizabeth Sztul & Khalid Salaita & Alexa L. Mattheyses, 2022. "Imaging vesicle formation dynamics supports the flexible model of clathrin-mediated endocytosis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Fabian Lukas & Claudia Matthaeus & Tania López-Hernández & Ines Lahmann & Nicole Schultz & Martin Lehmann & Dmytro Puchkov & Jan Pielage & Volker Haucke & Tanja Maritzen, 2024. "Canonical and non-canonical integrin-based adhesions dynamically interconvert," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Ruobo Zhou & Boran Han & Roberta Nowak & Yunzhe Lu & Evan Heller & Chenglong Xia & Athar H. Chishti & Velia M. Fowler & Xiaowei Zhuang, 2022. "Proteomic and functional analyses of the periodic membrane skeleton in neurons," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Fengfeng Niu & Lingxuan Li & Lei Wang & Jinman Xiao & Shun Xu & Yong Liu & Leishu Lin & Cong Yu & Zhiyi Wei, 2024. "Autoinhibition and activation of myosin VI revealed by its cryo-EM structure," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Meiyan Jin & Cyna Shirazinejad & Bowen Wang & Amy Yan & Johannes Schöneberg & Srigokul Upadhyayula & Ke Xu & David G. Drubin, 2022. "Branched actin networks are organized for asymmetric force production during clathrin-mediated endocytosis in mammalian cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Andrea Ghisleni & Mayte Bonilla-Quintana & Michele Crestani & Zeno Lavagnino & Camilla Galli & Padmini Rangamani & Nils C. Gauthier, 2024. "Mechanically induced topological transition of spectrin regulates its distribution in the mammalian cell cortex," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36304-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.