IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03533-0.html
   My bibliography  Save this article

Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis

Author

Listed:
  • Delia Bucher

    (University Hospital Heidelberg
    German Cancer Research Center (DKFZ))

  • Felix Frey

    (BioQuant Center
    Heidelberg University)

  • Kem A. Sochacki

    (National Institutes of Health)

  • Susann Kummer

    (University Hospital Heidelberg)

  • Jan-Philip Bergeest

    (German Cancer Research Center (DKFZ)
    BioQuant Center
    Heidelberg University)

  • William J. Godinez

    (German Cancer Research Center (DKFZ)
    BioQuant Center
    Heidelberg University)

  • Hans-Georg Kräusslich

    (University Hospital Heidelberg)

  • Karl Rohr

    (German Cancer Research Center (DKFZ)
    BioQuant Center
    Heidelberg University)

  • Justin W. Taraska

    (National Institutes of Health)

  • Ulrich S. Schwarz

    (BioQuant Center
    Heidelberg University)

  • Steeve Boulant

    (University Hospital Heidelberg
    German Cancer Research Center (DKFZ))

Abstract

Although essential for many cellular processes, the sequence of structural and molecular events during clathrin-mediated endocytosis remains elusive. While it was long believed that clathrin-coated pits grow with a constant curvature, it was recently suggested that clathrin first assembles to form flat structures that then bend while maintaining a constant surface area. Here, we combine correlative electron and light microscopy and mathematical growth laws to study the ultrastructural rearrangements of the clathrin coat during endocytosis in BSC-1 mammalian cells. We confirm that clathrin coats initially grow flat and demonstrate that curvature begins when around 70% of the final clathrin content is acquired. We find that this transition is marked by a change in the clathrin to clathrin-adaptor protein AP2 ratio and that membrane tension suppresses this transition. Our results support the notion that BSC-1 mammalian cells dynamically regulate the flat-to-curved transition in clathrin-mediated endocytosis by both biochemical and mechanical factors.

Suggested Citation

  • Delia Bucher & Felix Frey & Kem A. Sochacki & Susann Kummer & Jan-Philip Bergeest & William J. Godinez & Hans-Georg Kräusslich & Karl Rohr & Justin W. Taraska & Ulrich S. Schwarz & Steeve Boulant, 2018. "Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03533-0
    DOI: 10.1038/s41467-018-03533-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03533-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03533-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz J. Nawara & Yancey D. Williams & Tejeshwar C. Rao & Yuesong Hu & Elizabeth Sztul & Khalid Salaita & Alexa L. Mattheyses, 2022. "Imaging vesicle formation dynamics supports the flexible model of clathrin-mediated endocytosis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Meiyan Jin & Cyna Shirazinejad & Bowen Wang & Amy Yan & Johannes Schöneberg & Srigokul Upadhyayula & Ke Xu & David G. Drubin, 2022. "Branched actin networks are organized for asymmetric force production during clathrin-mediated endocytosis in mammalian cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Kazuki Obashi & Kem A. Sochacki & Marie-Paule Strub & Justin W. Taraska, 2023. "A conformational switch in clathrin light chain regulates lattice structure and endocytosis at the plasma membrane of mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03533-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.