IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-34699-3.html
   My bibliography  Save this article

Recovery of oxidized two-dimensional MXenes through high frequency nanoscale electromechanical vibration

Author

Listed:
  • Heba Ahmed

    (RMIT University)

  • Hossein Alijani

    (RMIT University)

  • Ahmed El-Ghazaly

    (Linköping University)

  • Joseph Halim

    (Linköping University)

  • Billy J. Murdoch

    (RMIT University)

  • Yemima Ehrnst

    (RMIT University)

  • Emily Massahud

    (RMIT University)

  • Amgad R. Rezk

    (RMIT University)

  • Johanna Rosen

    (Linköping University)

  • Leslie Y. Yeo

    (RMIT University)

Abstract

MXenes hold immense potential given their superior electrical properties. The practical adoption of these promising materials is, however, severely constrained by their oxidative susceptibility, leading to significant performance deterioration and lifespan limitations. Attempts to preserve MXenes have been limited, and it has not been possible thus far to reverse the material’s performance. In this work, we show that subjecting oxidized micron or nanometer thickness dry MXene films—even those constructed from nanometer-order solution-dispersed oxidized flakes—to just one minute of 10 MHz nanoscale electromechanical vibration leads to considerable removal of its surface oxide layer, whilst preserving its structure and characteristics. Importantly, electrochemical performance is recovered close to that of their original state: the pseudocapacitance, which decreased by almost 50% due to its oxidation, reverses to approximately 98% of its original value, with good capacitance retention ( ≈ 93%) following 10,000 charge–discharge cycles at 10 A g−1. These promising results allude to the exciting possibility for rejuvenating the material for reuse, therefore offering a more economical and sustainable route that improves its potential for practical translation.

Suggested Citation

  • Heba Ahmed & Hossein Alijani & Ahmed El-Ghazaly & Joseph Halim & Billy J. Murdoch & Yemima Ehrnst & Emily Massahud & Amgad R. Rezk & Johanna Rosen & Leslie Y. Yeo, 2023. "Recovery of oxidized two-dimensional MXenes through high frequency nanoscale electromechanical vibration," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-34699-3
    DOI: 10.1038/s41467-022-34699-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34699-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34699-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heba Ahmed & Amgad R. Rezk & Joseph J. Richardson & Lauren K. Macreadie & Ravichandar Babarao & Edwin L. H. Mayes & Lillian Lee & Leslie Y. Yeo, 2019. "Acoustomicrofluidic assembly of oriented and simultaneously activated metal–organic frameworks," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Maria R. Lukatskaya & Sankalp Kota & Zifeng Lin & Meng-Qiang Zhao & Netanel Shpigel & Mikhael D. Levi & Joseph Halim & Pierre-Louis Taberna & Michel W. Barsoum & Patrice Simon & Yury Gogotsi, 2017. "Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides," Nature Energy, Nature, vol. 2(8), pages 1-6, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Xinchao Lu & Huachao Yang & Zheng Bo & Biyao Gong & Mengyu Cao & Xia Chen & Erka Wu & Jianhua Yan & Kefa Cen & Kostya (Ken) Ostrikov, 2022. "Aligned Ti 3 C 2 T X Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability," Energies, MDPI, vol. 15(3), pages 1-12, February.
    3. Tang, Hong & Jiang, Mengjin & Ren, Erhui & Zhang, Yue & Lai, Xiaoxu & Cui, Ce & Jiang, Shouxiang & Zhou, Mi & Qin, Qin & Guo, Ronghui, 2020. "Integrate electrical conductivity and Li+ ion mobility into hierarchical heterostructure Ti3C2@CoO/ZnO composites toward high-performance lithium ion storage," Energy, Elsevier, vol. 212(C).
    4. Mailis Lounasvuori & Yangyunli Sun & Tyler S. Mathis & Ljiljana Puskar & Ulrich Schade & De-En Jiang & Yury Gogotsi & Tristan Petit, 2023. "Vibrational signature of hydrated protons confined in MXene interlayers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Ke Li & Juan Zhao & Ainur Zhussupbekova & Christopher E. Shuck & Lucia Hughes & Yueyao Dong & Sebastian Barwich & Sebastien Vaesen & Igor V. Shvets & Matthias Möbius & Wolfgang Schmitt & Yury Gogotsi , 2022. "4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Yongjiu Yuan & Xin Li & Lan Jiang & Misheng Liang & Xueqiang Zhang & Shouyu Wu & Junrui Wu & Mengyao Tian & Yang Zhao & Liangti Qu, 2023. "Laser maskless fast patterning for multitype microsupercapacitors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Tholkappiyan Ramachandran & Abdel-Hamid Ismail Mourad & Mostafa S. A. ElSayed, 2023. "Nb 2 CT x -Based MXenes Most Recent Developments: From Principles to New Applications," Energies, MDPI, vol. 16(8), pages 1-27, April.
    8. Marc Brunet Cabré & Dahnan Spurling & Pietro Martinuz & Mariangela Longhi & Christian Schröder & Hugo Nolan & Valeria Nicolosi & Paula E. Colavita & Kim McKelvey, 2023. "Isolation of pseudocapacitive surface processes at monolayer MXene flakes reveals delocalized charging mechanism," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Kunwar, Ria & Pal, Bhupender & Izwan Misnon, Izan & Daniyal, Hamdan & Zabihi, Fatemeh & Yang, Shengyuan & Sofer, Zděnek & Yang, Chun-Chen & Jose, Rajan, 2023. "Characterization of electrochemical double layer capacitor electrode using self-discharge measurements and modeling," Applied Energy, Elsevier, vol. 334(C).
    10. Changjae Lee & Soon Mo Park & Soobin Kim & Yun-Seok Choi & Geonhyeong Park & Yun Chan Kang & Chong Min Koo & Seon Joon Kim & Dong Ki Yoon, 2022. "Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Yongjiu Lei & Wenli Zhao & Jun Yin & Yinchang Ma & Zhiming Zhao & Jian Yin & Yusuf Khan & Mohamed Nejib Hedhili & Long Chen & Qingxiao Wang & Youyou Yuan & Xixiang Zhang & Osman M. Bakr & Omar F. Moha, 2023. "Discovery of a three-proton insertion mechanism in α-molybdenum trioxide leading to enhanced charge storage capacity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Tiezhu Xu & Zhenming Xu & Tengyu Yao & Miaoran Zhang & Duo Chen & Xiaogang Zhang & Laifa Shen, 2023. "Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-34699-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.