IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35707-2.html
   My bibliography  Save this article

The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis

Author

Listed:
  • Zhi Lin

    (Central South University)

  • Jiao Liu

    (Third Affiliated Hospital of Guangzhou Medical University
    Guangzhou Medical University)

  • Fei Long

    (Central South University)

  • Rui Kang

    (UT Southwestern Medical Center)

  • Guido Kroemer

    (Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France
    Gustave Roussy Cancer Campus
    Hôpital Européen Georges Pompidou)

  • Daolin Tang

    (UT Southwestern Medical Center)

  • Minghua Yang

    (Central South University)

Abstract

Ferroptosis is a type of regulated necrosis caused by unrestricted lipid peroxidation and subsequent plasma membrane rupture. However, the lipid remodeling mechanism that determines sensitivity to ferroptosis remains poorly understood. Here, we report a previously unrecognized role for the lipid flippase solute carrier family 47 member 1 (SLC47A1) as a regulator of lipid remodeling and survival during ferroptosis. Among 49 phospholipid scramblases, flippases, and floppases we analyzed, only SLC47A1 had mRNA that was selectively upregulated in multiple cancer cells exposed to ferroptotic inducers. Large-scale lipidomics and functional analyses revealed that the silencing of SLC47A1 increased RSL3- or erastin-induced ferroptosis by favoring ACSL4-SOAT1–mediated production of polyunsaturated fatty acid cholesterol esters. We identified peroxisome proliferator activated receptor alpha (PPARA) as a transcription factor that transactivates SLC47A1. The depletion of PPARA and SLC47A1 similarly sensitized cells to ferroptosis induction, whereas transfection-enforced re-expression of SLC47A1 restored resistance to ferroptosis in PPARA-deficient cells. Pharmacological or genetic blockade of the PPARA-SLC47A1 pathway increased the anticancer activity of a ferroptosis inducer in mice. These findings establish a direct molecular link between ferroptosis and lipid transporters, which may provide metabolic targets for overcoming drug resistance.

Suggested Citation

  • Zhi Lin & Jiao Liu & Fei Long & Rui Kang & Guido Kroemer & Daolin Tang & Minghua Yang, 2022. "The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35707-2
    DOI: 10.1038/s41467-022-35707-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35707-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35707-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xin Chen & Jun Huang & Chunhua Yu & Jiao Liu & Wanli Gao & Jingbo Li & Xinxin Song & Zhuan Zhou & Changfeng Li & Yangchun Xie & Guido Kroemer & Jinbao Liu & Daolin Tang & Rui Kang, 2022. "A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Jiao Liu & Xinxin Song & Feimei Kuang & Qiuhong Zhang & Yangchun Xie & Rui Kang & Guido Kroemer & Daolin Tang, 2021. "NUPR1 is a critical repressor of ferroptosis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Enyong Dai & Leng Han & Jiao Liu & Yangchun Xie & Herbert J. Zeh & Rui Kang & Lulu Bai & Daolin Tang, 2020. "Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Tao Long & Yingyuan Sun & Abdirahman Hassan & Xiaofeng Qi & Xiaochun Li, 2020. "Structure of nevanimibe-bound tetrameric human ACAT1," Nature, Nature, vol. 581(7808), pages 339-343, May.
    5. Yilong Zou & Whitney S. Henry & Emily L. Ricq & Emily T. Graham & Vaishnavi V. Phadnis & Pema Maretich & Sateja Paradkar & Natalie Boehnke & Amy A. Deik & Ferenc Reinhardt & John K. Eaton & Bryan Ferg, 2020. "Plasticity of ether lipids promotes ferroptosis susceptibility and evasion," Nature, Nature, vol. 585(7826), pages 603-608, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keith Woodley & Laura S. Dillingh & George Giotopoulos & Pedro Madrigal & Kevin M. Rattigan & Céline Philippe & Vilma Dembitz & Aoife M. S. Magee & Ryan Asby & Louie N. van de Lagemaat & Christopher M, 2023. "Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoshu Bi & Jiaqi Liang & Yunyi Bian & Guangyao Shan & Yiwei Huang & Tao Lu & Huan Zhang & Xing Jin & Zhencong Chen & Mengnan Zhao & Hong Fan & Qun Wang & Boyi Gan & Cheng Zhan, 2024. "Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Xiaofeng Sun & Chengjian Zhou & Simin Xia & Xi Chen, 2023. "Small molecule-nanobody conjugate induced proximity controls intracellular processes and modulates endogenous unligandable targets," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Xuewu Sui & Kun Wang & Kangkang Song & Chen Xu & Jiunn Song & Chia-Wei Lee & Maofu Liao & Robert V. Farese & Tobias C. Walther, 2023. "Mechanism of action for small-molecule inhibitors of triacylglycerol synthesis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Hongwei Ma & Yongheng Yang & Tiejian Nie & Rong Yan & Yue Si & Jing Wei & Mengyun Li & He Liu & Wei Ye & Hui Zhang & Linfeng Cheng & Liang Zhang & Xin Lv & Limin Luo & Zhikai Xu & Xijing Zhang & Yingf, 2024. "Disparate macrophage responses are linked to infection outcome of Hantan virus in humans or rodents," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    5. Ziheng Chen & I-Lin Ho & Melinda Soeung & Er-Yen Yen & Jintan Liu & Liang Yan & Johnathon L. Rose & Sanjana Srinivasan & Shan Jiang & Q. Edward Chang & Ningping Feng & Jason P. Gay & Qi Wang & Jing Wa, 2023. "Ether phospholipids are required for mitochondrial reactive oxygen species homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Tanaz Sharifnia & Mathias J. Wawer & Amy Goodale & Yenarae Lee & Mariya Kazachkova & Joshua M. Dempster & Sandrine Muller & Joan Levy & Daniel M. Freed & Josh Sommer & Jérémie Kalfon & Francisca Vazqu, 2023. "Mapping the landscape of genetic dependencies in chordoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Mihee Oh & Seo Young Jang & Ji-Yoon Lee & Jong Woo Kim & Youngae Jung & Jiwoo Kim & Jinho Seo & Tae-Su Han & Eunji Jang & Hye Young Son & Dain Kim & Min Wook Kim & Jin-Sung Park & Kwon-Ho Song & Kyoun, 2023. "The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Pingfeng Zhang & Zheng Liu, 2024. "Structural insights into the transporting and catalyzing mechanism of DltB in LTA D-alanylation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Lixia Chen & Peiling Dai & Lei Liu & Yujia Chen & Yanxia Lu & Lin Zheng & Haowei Wang & Qinzi Yuan & Xuenong Li, 2024. "The lipid-metabolism enzyme ECI2 reduces neutrophil extracellular traps formation for colorectal cancer suppression," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Huiqiang Cai & Bin Zhang & Johanne Ahrenfeldt & Justin V. Joseph & Maria Riedel & Zongliang Gao & Sofie K. Thomsen & Ditte S. Christensen & Rasmus O. Bak & Henrik Hager & Mikkel H. Vendelbo & Xin Gao , 2024. "CRISPR/Cas9 model of prostate cancer identifies Kmt2c deficiency as a metastatic driver by Odam/Cabs1 gene cluster expression," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Kun Wang & Chia-Wei Lee & Xuewu Sui & Siyoung Kim & Shuhui Wang & Aidan B. Higgs & Aaron J. Baublis & Gregory A. Voth & Maofu Liao & Tobias C. Walther & Robert V. Farese, 2023. "The structure of phosphatidylinositol remodeling MBOAT7 reveals its catalytic mechanism and enables inhibitor identification," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Olga M. Kudryashova & Alexey M. Nesterenko & Dmitry A. Korzhenevskii & Valeriy K. Sulyagin & Vasilisa M. Tereshchuk & Vsevolod V. Belousov & Arina G. Shokhina, 2023. "Proteomic Shift in Mouse Embryonic Fibroblasts Pfa1 during Erastin, ML210, and BSO-Induced Ferroptosis," Data, MDPI, vol. 8(7), pages 1-7, July.
    13. Hyemin Lee & Amber Horbath & Lavanya Kondiparthi & Jitendra Kumar Meena & Guang Lei & Shayani Dasgupta & Xiaoguang Liu & Li Zhuang & Pranavi Koppula & Mi Li & Iqbal Mahmud & Bo Wei & Philip L. Lorenzi, 2024. "Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Xin Chen & Jun Huang & Chunhua Yu & Jiao Liu & Wanli Gao & Jingbo Li & Xinxin Song & Zhuan Zhou & Changfeng Li & Yangchun Xie & Guido Kroemer & Jinbao Liu & Daolin Tang & Rui Kang, 2022. "A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35707-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.