IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v585y2020i7826d10.1038_s41586-020-2732-8.html
   My bibliography  Save this article

Plasticity of ether lipids promotes ferroptosis susceptibility and evasion

Author

Listed:
  • Yilong Zou

    (Broad Institute
    Harvard University)

  • Whitney S. Henry

    (Whitehead Institute for Biomedical Research)

  • Emily L. Ricq

    (Broad Institute
    Harvard University)

  • Emily T. Graham

    (Broad Institute)

  • Vaishnavi V. Phadnis

    (Whitehead Institute for Biomedical Research)

  • Pema Maretich

    (MIT)

  • Sateja Paradkar

    (Whitehead Institute for Biomedical Research)

  • Natalie Boehnke

    (MIT)

  • Amy A. Deik

    (Broad Institute)

  • Ferenc Reinhardt

    (Whitehead Institute for Biomedical Research)

  • John K. Eaton

    (Broad Institute)

  • Bryan Ferguson

    (Broad Institute)

  • Wenyu Wang

    (Broad Institute)

  • Joshua Fairman

    (Whitehead Institute for Biomedical Research)

  • Heather R. Keys

    (Whitehead Institute for Biomedical Research)

  • Vlado Dančík

    (Broad Institute)

  • Clary B. Clish

    (Broad Institute)

  • Paul A. Clemons

    (Broad Institute)

  • Paula T. Hammond

    (MIT
    MIT)

  • Laurie A. Boyer

    (MIT
    MIT)

  • Robert A. Weinberg

    (Whitehead Institute for Biomedical Research)

  • Stuart L. Schreiber

    (Broad Institute
    Harvard University)

Abstract

Ferroptosis—an iron-dependent, non-apoptotic cell death process—is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions2–5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR–Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome–ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis.

Suggested Citation

  • Yilong Zou & Whitney S. Henry & Emily L. Ricq & Emily T. Graham & Vaishnavi V. Phadnis & Pema Maretich & Sateja Paradkar & Natalie Boehnke & Amy A. Deik & Ferenc Reinhardt & John K. Eaton & Bryan Ferg, 2020. "Plasticity of ether lipids promotes ferroptosis susceptibility and evasion," Nature, Nature, vol. 585(7826), pages 603-608, September.
  • Handle: RePEc:nat:nature:v:585:y:2020:i:7826:d:10.1038_s41586-020-2732-8
    DOI: 10.1038/s41586-020-2732-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2732-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2732-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanaz Sharifnia & Mathias J. Wawer & Amy Goodale & Yenarae Lee & Mariya Kazachkova & Joshua M. Dempster & Sandrine Muller & Joan Levy & Daniel M. Freed & Josh Sommer & Jérémie Kalfon & Francisca Vazqu, 2023. "Mapping the landscape of genetic dependencies in chordoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Xiaofeng Sun & Chengjian Zhou & Simin Xia & Xi Chen, 2023. "Small molecule-nanobody conjugate induced proximity controls intracellular processes and modulates endogenous unligandable targets," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Zhi Lin & Jiao Liu & Fei Long & Rui Kang & Guido Kroemer & Daolin Tang & Minghua Yang, 2022. "The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Vincent de Laat & Halit Topal & Xander Spotbeen & Ali Talebi & Jonas Dehairs & Jakub Idkowiak & Frank Vanderhoydonc & Tessa Ostyn & Peihua Zhao & Maarten Jacquemyn & Michele Wölk & Anna Sablina & Koen, 2024. "Intrinsic temperature increase drives lipid metabolism towards ferroptosis evasion and chemotherapy resistance in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Ziheng Chen & I-Lin Ho & Melinda Soeung & Er-Yen Yen & Jintan Liu & Liang Yan & Johnathon L. Rose & Sanjana Srinivasan & Shan Jiang & Q. Edward Chang & Ningping Feng & Jason P. Gay & Qi Wang & Jing Wa, 2023. "Ether phospholipids are required for mitochondrial reactive oxygen species homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Lixia Chen & Peiling Dai & Lei Liu & Yujia Chen & Yanxia Lu & Lin Zheng & Haowei Wang & Qinzi Yuan & Xuenong Li, 2024. "The lipid-metabolism enzyme ECI2 reduces neutrophil extracellular traps formation for colorectal cancer suppression," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Mihee Oh & Seo Young Jang & Ji-Yoon Lee & Jong Woo Kim & Youngae Jung & Jiwoo Kim & Jinho Seo & Tae-Su Han & Eunji Jang & Hye Young Son & Dain Kim & Min Wook Kim & Jin-Sung Park & Kwon-Ho Song & Kyoun, 2023. "The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Olga M. Kudryashova & Alexey M. Nesterenko & Dmitry A. Korzhenevskii & Valeriy K. Sulyagin & Vasilisa M. Tereshchuk & Vsevolod V. Belousov & Arina G. Shokhina, 2023. "Proteomic Shift in Mouse Embryonic Fibroblasts Pfa1 during Erastin, ML210, and BSO-Induced Ferroptosis," Data, MDPI, vol. 8(7), pages 1-7, July.
    9. Hyemin Lee & Amber Horbath & Lavanya Kondiparthi & Jitendra Kumar Meena & Guang Lei & Shayani Dasgupta & Xiaoguang Liu & Li Zhuang & Pranavi Koppula & Mi Li & Iqbal Mahmud & Bo Wei & Philip L. Lorenzi, 2024. "Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Guoshu Bi & Jiaqi Liang & Yunyi Bian & Guangyao Shan & Yiwei Huang & Tao Lu & Huan Zhang & Xing Jin & Zhencong Chen & Mengnan Zhao & Hong Fan & Qun Wang & Boyi Gan & Cheng Zhan, 2024. "Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Xin Chen & Jun Huang & Chunhua Yu & Jiao Liu & Wanli Gao & Jingbo Li & Xinxin Song & Zhuan Zhou & Changfeng Li & Yangchun Xie & Guido Kroemer & Jinbao Liu & Daolin Tang & Rui Kang, 2022. "A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. M. T. Herrera-Abreu & J. Guan & U. Khalid & J. Ning & M. R. Costa & J. Chan & Q. Li & J-P. Fortin & W. R. Wong & P. Perampalam & A. Biton & W. Sandoval & J. Vijay & M. Hafner & R. Cutts & G. Wilson & , 2024. "Inhibition of GPX4 enhances CDK4/6 inhibitor and endocrine therapy activity in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:585:y:2020:i:7826:d:10.1038_s41586-020-2732-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.