IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47783-7.html
   My bibliography  Save this article

Structural insights into the transporting and catalyzing mechanism of DltB in LTA D-alanylation

Author

Listed:
  • Pingfeng Zhang

    (Renmin Hospital of Wuhan University)

  • Zheng Liu

    (The Chinese University of Hong Kong, Shenzhen)

Abstract

DltB, a model member of the Membrane-Bound O-AcylTransferase (MBOAT) superfamily, plays a crucial role in D-alanylation of the lipoteichoic acid (LTA), a significant component of the cell wall of gram-positive bacteria. This process stabilizes the cell wall structure, influences bacterial virulence, and modulates the host immune response. Despite its significance, the role of DltB is not well understood. Through biochemical analysis and cryo-EM imaging, we discover that Streptococcus thermophilus DltB forms a homo-tetramer on the cell membrane. We further visualize DltB in an apo form, in complex with DltC, and in complex with its inhibitor amsacrine (m-AMSA). Each tetramer features a central hole. The C-tunnel of each protomer faces the intratetramer interface and provides access to the periphery membrane. Each protomer binds a DltC without changing the tetrameric organization. A phosphatidylglycerol (PG) molecule in the substrate-binding site may serve as an LTA carrier. The inhibitor m-AMSA bound to the L-tunnel of each protomer blocks the active site. The tetrameric organization of DltB provides a scaffold for catalyzing D-alanyl transfer and regulating the channel opening and closing. Our findings unveil DltB’s dual function in the D-alanylation pathway, and provide insight for targeting DltB as a anti-virulence antibiotic.

Suggested Citation

  • Pingfeng Zhang & Zheng Liu, 2024. "Structural insights into the transporting and catalyzing mechanism of DltB in LTA D-alanylation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47783-7
    DOI: 10.1038/s41467-024-47783-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47783-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47783-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao Long & Yingyuan Sun & Abdirahman Hassan & Xiaofeng Qi & Xiaochun Li, 2020. "Structure of nevanimibe-bound tetrameric human ACAT1," Nature, Nature, vol. 581(7808), pages 339-343, May.
    2. Yang Liu & Xiaofeng Qi & Linda Donnelly & Nadia Elghobashi-Meinhardt & Tao Long & Rich W. Zhou & Yingyuan Sun & Boyuan Wang & Xiaochun Li, 2022. "Mechanisms and inhibition of Porcupine-mediated Wnt acylation," Nature, Nature, vol. 607(7920), pages 816-822, July.
    3. Hongwu Qian & Xin Zhao & Renhong Yan & Xia Yao & Shuai Gao & Xue Sun & Ximing Du & Hongyuan Yang & Catherine C. L. Wong & Nieng Yan, 2020. "Structural basis for catalysis and substrate specificity of human ACAT1," Nature, Nature, vol. 581(7808), pages 333-338, May.
    4. Lie Wang & Hongwu Qian & Yin Nian & Yimo Han & Zhenning Ren & Hanzhi Zhang & Liya Hu & B. V. Venkataram Prasad & Arthur Laganowsky & Nieng Yan & Ming Zhou, 2020. "Structure and mechanism of human diacylglycerol O-acyltransferase 1," Nature, Nature, vol. 581(7808), pages 329-332, May.
    5. Xuewu Sui & Kun Wang & Nina L. Gluchowski & Shane D. Elliott & Maofu Liao & Tobias C. Walther & Robert V. Farese, 2020. "Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme," Nature, Nature, vol. 581(7808), pages 323-328, May.
    6. Dan Ma & Zhizhi Wang & Christopher N. Merrikh & Kevin S. Lang & Peilong Lu & Xin Li & Houra Merrikh & Zihe Rao & Wenqing Xu, 2018. "Crystal structure of a membrane-bound O-acyltransferase," Nature, Nature, vol. 562(7726), pages 286-290, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Wang & Chia-Wei Lee & Xuewu Sui & Siyoung Kim & Shuhui Wang & Aidan B. Higgs & Aaron J. Baublis & Gregory A. Voth & Maofu Liao & Tobias C. Walther & Robert V. Farese, 2023. "The structure of phosphatidylinositol remodeling MBOAT7 reveals its catalytic mechanism and enables inhibitor identification," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Xuewu Sui & Kun Wang & Kangkang Song & Chen Xu & Jiunn Song & Chia-Wei Lee & Maofu Liao & Robert V. Farese & Tobias C. Walther, 2023. "Mechanism of action for small-molecule inhibitors of triacylglycerol synthesis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Qing Zhang & Deqiang Yao & Bing Rao & Liyan Jian & Yang Chen & Kexin Hu & Ying Xia & Shaobai Li & Yafeng Shen & An Qin & Jie Zhao & Lu Zhou & Ming Lei & Xian-Cheng Jiang & Yu Cao, 2021. "The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Xinli Dai & Xuanzhong Liu & Jialu Li & Hui Chen & Chuangye Yan & Yaozong Li & Hanmin Liu & Dong Deng & Xiang Wang, 2024. "Structural insights into the inhibition mechanism of fungal GWT1 by manogepix," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Iris D. Zelnik & Beatriz Mestre & Jonathan J. Weinstein & Tamir Dingjan & Stav Izrailov & Shifra Ben-Dor & Sarel J. Fleishman & Anthony H. Futerman, 2023. "Computational design and molecular dynamics simulations suggest the mode of substrate binding in ceramide synthases," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    6. Shuhui Wang & Kun Wang & Kangkang Song & Zon Weng Lai & Pengfei Li & Dongying Li & Yajie Sun & Ye Mei & Chen Xu & Maofu Liao, 2024. "Structures of the Mycobacterium tuberculosis efflux pump EfpA reveal the mechanisms of transport and inhibition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Yanjie Tan & Zhenzhou Huang & Yi Jin & Jiaying Wang & Hongjun Fan & Yangyang Liu & Liang Zhang & Yue Wu & Peiwei Liu & Tianliang Li & Jie Ran & He Tian & Sin Man Lam & Min Liu & Jun Zhou & Yunfan Yang, 2024. "Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Yang, Ruiyue & Hong, Chunyang & Liu, Wei & Wu, Xiaoguang & Wang, Tianyu & Huang, Zhongwei, 2021. "Non-contaminating cryogenic fluid access to high-temperature resources: Liquid nitrogen fracturing in a lab-scale Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 165(P1), pages 125-138.
    9. Yong Jiang & Zhong Zhuang & Wenqian Jia & Ming Xie & Zhengkui Zhou & Jing Tang & Hao Bai & Guobin Chang & Guohong Chen & Shuisheng Hou, 2022. "Comparative Transcriptome Analysis Reveals the Key Genes Involved in Lipid Deposition in Pekin Ducks ( Anas platyrhynchos domesticus )," Agriculture, MDPI, vol. 12(11), pages 1-19, October.
    10. Zhi Lin & Jiao Liu & Fei Long & Rui Kang & Guido Kroemer & Daolin Tang & Minghua Yang, 2022. "The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Philip Schmiege & Linda Donnelly & Nadia Elghobashi-Meinhardt & Chia-Hsueh Lee & Xiaochun Li, 2024. "Structure and inhibition of the human lysosomal transporter Sialin," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Dianne Lumaquin-Yin & Emily Montal & Eleanor Johns & Arianna Baggiolini & Ting-Hsiang Huang & Yilun Ma & Charlotte LaPlante & Shruthy Suresh & Lorenz Studer & Richard M. White, 2023. "Lipid droplets are a metabolic vulnerability in melanoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Lie Wang & Ming Zhou, 2023. "Structure of a eukaryotic cholinephosphotransferase-1 reveals mechanisms of substrate recognition and catalysis," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47783-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.