IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52978-z.html
   My bibliography  Save this article

Intrinsic temperature increase drives lipid metabolism towards ferroptosis evasion and chemotherapy resistance in pancreatic cancer

Author

Listed:
  • Vincent de Laat

    (KU Leuven and Leuven Cancer Institute (LKI))

  • Halit Topal

    (University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI))

  • Xander Spotbeen

    (KU Leuven and Leuven Cancer Institute (LKI))

  • Ali Talebi

    (KU Leuven and Leuven Cancer Institute (LKI))

  • Jonas Dehairs

    (KU Leuven and Leuven Cancer Institute (LKI))

  • Jakub Idkowiak

    (KU Leuven and Leuven Cancer Institute (LKI))

  • Frank Vanderhoydonc

    (KU Leuven and Leuven Cancer Institute (LKI))

  • Tessa Ostyn

    (University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI))

  • Peihua Zhao

    (VIB-KU Leuven Center for Cancer Biology)

  • Maarten Jacquemyn

    (KU Leuven Department of Microbiology and Immunology)

  • Michele Wölk

    (Faculty of Medicine Carl Gustav Carus of TU Dresden)

  • Anna Sablina

    (VIB-KU Leuven Center for Cancer Biology)

  • Koen Augustyns

    (University of Antwerp)

  • Tom Vanden Berghe

    (VIB-UGent Center for Inflammation Research
    University of Antwerp)

  • Tania Roskams

    (University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI))

  • Dirk Daelemans

    (KU Leuven Department of Microbiology and Immunology)

  • Maria Fedorova

    (Faculty of Medicine Carl Gustav Carus of TU Dresden)

  • Baki Topal

    (University Hospitals Leuven, KU Leuven and Leuven Cancer Institute (LKI))

  • Johannes V. Swinnen

    (KU Leuven and Leuven Cancer Institute (LKI))

Abstract

A spontaneously occurring temperature increase in solid tumors has been reported sporadically, but is largely overlooked in terms of cancer biology. Here we show that temperature is increased in tumors of patients with pancreatic ductal adenocarcinoma (PDAC) and explore how this could affect therapy response. By mimicking this observation in PDAC cell lines, we demonstrate that through adaptive changes in lipid metabolism, the temperature increase found in human PDAC confers protection to lipid peroxidation and contributes to gemcitabine resistance. Consistent with the recently uncovered role of p38 MAPK in ferroptotic cell death, we find that the reduction in lipid peroxidation potential following adaptation to tumoral temperature allows for p38 MAPK inhibition, conferring chemoresistance. As an increase in tumoral temperature is observed in several other tumor types, our findings warrant taking tumoral temperature into account in subsequent studies related to ferroptosis and therapy resistance. More broadly, our findings indicate that tumoral temperature affects cancer biology.

Suggested Citation

  • Vincent de Laat & Halit Topal & Xander Spotbeen & Ali Talebi & Jonas Dehairs & Jakub Idkowiak & Frank Vanderhoydonc & Tessa Ostyn & Peihua Zhao & Maarten Jacquemyn & Michele Wölk & Anna Sablina & Koen, 2024. "Intrinsic temperature increase drives lipid metabolism towards ferroptosis evasion and chemotherapy resistance in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52978-z
    DOI: 10.1038/s41467-024-52978-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52978-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52978-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takahiro Seki & Yunlong Yang & Xiaoting Sun & Sharon Lim & Sisi Xie & Ziheng Guo & Wenjing Xiong & Masashi Kuroda & Hiroshi Sakaue & Kayoko Hosaka & Xu Jing & Masahito Yoshihara & Lili Qu & Xin Li & Y, 2022. "Brown-fat-mediated tumour suppression by cold-altered global metabolism," Nature, Nature, vol. 608(7922), pages 421-428, August.
    2. Yilong Zou & Whitney S. Henry & Emily L. Ricq & Emily T. Graham & Vaishnavi V. Phadnis & Pema Maretich & Sateja Paradkar & Natalie Boehnke & Amy A. Deik & Ferenc Reinhardt & John K. Eaton & Bryan Ferg, 2020. "Plasticity of ether lipids promotes ferroptosis susceptibility and evasion," Nature, Nature, vol. 585(7826), pages 603-608, September.
    3. Ali Talebi & Jonas Dehairs & Florian Rambow & Aljosja Rogiers & David Nittner & Rita Derua & Frank Vanderhoydonc & Joao A. G. Duarte & Francesca Bosisio & Kathleen Eynde & Kris Nys & Mónica Vara Pérez, 2018. "Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofeng Sun & Chengjian Zhou & Simin Xia & Xi Chen, 2023. "Small molecule-nanobody conjugate induced proximity controls intracellular processes and modulates endogenous unligandable targets," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Lixia Chen & Peiling Dai & Lei Liu & Yujia Chen & Yanxia Lu & Lin Zheng & Haowei Wang & Qinzi Yuan & Xuenong Li, 2024. "The lipid-metabolism enzyme ECI2 reduces neutrophil extracellular traps formation for colorectal cancer suppression," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Tom Nyen & Mélanie Planque & Lilian Wagensveld & Joao A. G. Duarte & Esther A. Zaal & Ali Talebi & Matteo Rossi & Pierre-René Körner & Lara Rizzotto & Stijn Moens & Wout Wispelaere & Regina E. M. Baid, 2022. "Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Zhi Lin & Jiao Liu & Fei Long & Rui Kang & Guido Kroemer & Daolin Tang & Minghua Yang, 2022. "The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Jinhong Xu & Le Cui & Jiaqi Wang & Shasha Zheng & Huahua Zhang & Shuo Ke & Xiaoqin Cao & Yanteng Shi & Jing Li & Ke Zen & Antonio Vidal-Puig & Chen-Yu Zhang & Liang Li & Xiaohong Jiang, 2023. "Cold-activated brown fat-derived extracellular vesicle-miR-378a-3p stimulates hepatic gluconeogenesis in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Ziheng Chen & I-Lin Ho & Melinda Soeung & Er-Yen Yen & Jintan Liu & Liang Yan & Johnathon L. Rose & Sanjana Srinivasan & Shan Jiang & Q. Edward Chang & Ningping Feng & Jason P. Gay & Qi Wang & Jing Wa, 2023. "Ether phospholipids are required for mitochondrial reactive oxygen species homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Olga M. Kudryashova & Alexey M. Nesterenko & Dmitry A. Korzhenevskii & Valeriy K. Sulyagin & Vasilisa M. Tereshchuk & Vsevolod V. Belousov & Arina G. Shokhina, 2023. "Proteomic Shift in Mouse Embryonic Fibroblasts Pfa1 during Erastin, ML210, and BSO-Induced Ferroptosis," Data, MDPI, vol. 8(7), pages 1-7, July.
    8. Jiaxin Liang & Deyang Yu & Chi Luo & Christopher Bennett & Mark Jedrychowski & Steve P. Gygi & Hans R. Widlund & Pere Puigserver, 2023. "Epigenetic suppression of PGC1α (PPARGC1A) causes collateral sensitivity to HMGCR-inhibitors within BRAF-treatment resistant melanomas," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Tanaz Sharifnia & Mathias J. Wawer & Amy Goodale & Yenarae Lee & Mariya Kazachkova & Joshua M. Dempster & Sandrine Muller & Joan Levy & Daniel M. Freed & Josh Sommer & Jérémie Kalfon & Francisca Vazqu, 2023. "Mapping the landscape of genetic dependencies in chordoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Mihee Oh & Seo Young Jang & Ji-Yoon Lee & Jong Woo Kim & Youngae Jung & Jiwoo Kim & Jinho Seo & Tae-Su Han & Eunji Jang & Hye Young Son & Dain Kim & Min Wook Kim & Jin-Sung Park & Kwon-Ho Song & Kyoun, 2023. "The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. M. T. Herrera-Abreu & J. Guan & U. Khalid & J. Ning & M. R. Costa & J. Chan & Q. Li & J-P. Fortin & W. R. Wong & P. Perampalam & A. Biton & W. Sandoval & J. Vijay & M. Hafner & R. Cutts & G. Wilson & , 2024. "Inhibition of GPX4 enhances CDK4/6 inhibitor and endocrine therapy activity in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Hyemin Lee & Amber Horbath & Lavanya Kondiparthi & Jitendra Kumar Meena & Guang Lei & Shayani Dasgupta & Xiaoguang Liu & Li Zhuang & Pranavi Koppula & Mi Li & Iqbal Mahmud & Bo Wei & Philip L. Lorenzi, 2024. "Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Guoshu Bi & Jiaqi Liang & Yunyi Bian & Guangyao Shan & Yiwei Huang & Tao Lu & Huan Zhang & Xing Jin & Zhencong Chen & Mengnan Zhao & Hong Fan & Qun Wang & Boyi Gan & Cheng Zhan, 2024. "Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    14. Xin Chen & Jun Huang & Chunhua Yu & Jiao Liu & Wanli Gao & Jingbo Li & Xinxin Song & Zhuan Zhou & Changfeng Li & Yangchun Xie & Guido Kroemer & Jinbao Liu & Daolin Tang & Rui Kang, 2022. "A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52978-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.