IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35631-5.html
   My bibliography  Save this article

Highly active and stable OER electrocatalysts derived from Sr2MIrO6 for proton exchange membrane water electrolyzers

Author

Listed:
  • María Retuerto

    (Instituto de Catálisis y Petroleoquímica)

  • Laura Pascual

    (Instituto de Catálisis y Petroleoquímica)

  • Jorge Torrero

    (Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR))

  • Mohamed Abdel Salam

    (King Abdulaziz University)

  • Álvaro Tolosana-Moranchel

    (Instituto de Catálisis y Petroleoquímica)

  • Diego Gianolio

    (Harwell Science and Innovation Campus)

  • Pilar Ferrer

    (Harwell Science and Innovation Campus)

  • Paula Kayser

    (Instituto de Ciencia de Materiales de Madrid)

  • Vincent Wilke

    (Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR))

  • Svenja Stiber

    (Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR))

  • Verónica Celorrio

    (Harwell Science and Innovation Campus)

  • Mohamed Mokthar

    (King Abdulaziz University)

  • Daniel García Sanchez

    (Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR))

  • Aldo Saul Gago

    (Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR))

  • Kaspar Andreas Friedrich

    (Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR))

  • Miguel Antonio Peña

    (Instituto de Catálisis y Petroleoquímica)

  • José Antonio Alonso

    (Instituto de Ciencia de Materiales de Madrid)

  • Sergio Rojas

    (Instituto de Catálisis y Petroleoquímica)

Abstract

Proton exchange membrane water electrolysis is a promising technology to produce green hydrogen from renewables, as it can efficiently achieve high current densities. Lowering iridium amount in oxygen evolution reaction electrocatalysts is critical for achieving cost-effective production of green hydrogen. In this work, we develop catalysts from Ir double perovskites. Sr2CaIrO6 achieves 10 mA cm−2 at only 1.48 V. The surface of the perovskite reconstructs when immersed in an acidic electrolyte and during the first catalytic cycles, resulting in a stable surface conformed by short-range order edge-sharing IrO6 octahedra arranged in an open structure responsible for the high performance. A proton exchange membrane water electrolysis cell is developed with Sr2CaIrO6 as anode and low Ir loading (0.4 mgIr cm−2). The cell achieves 2.40 V at 6 A cm−2 (overload) and no loss in performance at a constant 2 A cm−2 (nominal load). Thus, reducing Ir use without compromising efficiency and lifetime.

Suggested Citation

  • María Retuerto & Laura Pascual & Jorge Torrero & Mohamed Abdel Salam & Álvaro Tolosana-Moranchel & Diego Gianolio & Pilar Ferrer & Paula Kayser & Vincent Wilke & Svenja Stiber & Verónica Celorrio & Mo, 2022. "Highly active and stable OER electrocatalysts derived from Sr2MIrO6 for proton exchange membrane water electrolyzers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35631-5
    DOI: 10.1038/s41467-022-35631-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35631-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35631-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oscar Diaz-Morales & Stefan Raaijman & Ruud Kortlever & Patricia J. Kooyman & Tim Wezendonk & Jorge Gascon & W. T. Fu & Marc T. M. Koper, 2016. "Iridium-based double perovskites for efficient water oxidation in acid media," Nature Communications, Nature, vol. 7(1), pages 1-6, November.
    2. Lan Yang & Guangtao Yu & Xuan Ai & Wensheng Yan & Hengli Duan & Wei Chen & Xiaotian Li & Ting Wang & Chenghui Zhang & Xuri Huang & Jie-Sheng Chen & Xiaoxin Zou, 2018. "Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Marine Elmaalouf & Mateusz Odziomek & Silvia Duran & Maxime Gayrard & Mounib Bahri & Cédric Tard & Andrea Zitolo & Benedikt Lassalle-Kaiser & Jean-Yves Piquemal & Ovidiu Ersen & Cédric Boissière & Clé, 2021. "The origin of the high electrochemical activity of pseudo-amorphous iridium oxides," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Yubo Chen & Haiyan Li & Jingxian Wang & Yonghua Du & Shibo Xi & Yuanmiao Sun & Matthew Sherburne & Joel W. Ager & Adrian C. Fisher & Zhichuan J. Xu, 2019. "Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuannan Wang & Mingcheng Zhang & Zhenye Kang & Lei Shi & Yucheng Shen & Boyuan Tian & Yongcun Zou & Hui Chen & Xiaoxin Zou, 2023. "Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Dmitry Galyamin & Jorge Torrero & Isabel Rodríguez & Manuel J. Kolb & Pilar Ferrer & Laura Pascual & Mohamed Abdel Salam & Diego Gianolio & Verónica Celorrio & Mohamed Mokhtar & Daniel Garcia Sanchez , 2023. "Active and durable R2MnRuO7 pyrochlores with low Ru content for acidic oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Galyamin & Jorge Torrero & Isabel Rodríguez & Manuel J. Kolb & Pilar Ferrer & Laura Pascual & Mohamed Abdel Salam & Diego Gianolio & Verónica Celorrio & Mohamed Mokhtar & Daniel Garcia Sanchez , 2023. "Active and durable R2MnRuO7 pyrochlores with low Ru content for acidic oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jia-Wei Zhao & Kaihang Yue & Hong Zhang & Shu-Yin Wei & Jiawei Zhu & Dongdong Wang & Junze Chen & Vyacheslav Yu. Fominski & Gao-Ren Li, 2024. "The formation of unsaturated IrOx in SrIrO3 by cobalt-doping for acidic oxygen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Sanjiang Pan & Hao Li & Dan Liu & Rui Huang & Xuelei Pan & Dan Ren & Jun Li & Mohsen Shakouri & Qixing Zhang & Manjing Wang & Changchun Wei & Liqiang Mai & Bo Zhang & Ying Zhao & Zhenbin Wang & Michae, 2022. "Efficient and stable noble-metal-free catalyst for acidic water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Hui Su & Chenyu Yang & Meihuan Liu & Xu Zhang & Wanlin Zhou & Yuhao Zhang & Kun Zheng & Shixun Lian & Qinghua Liu, 2024. "Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Shouwei Zuo & Zhi-Peng Wu & Deting Xu & Rafia Ahmad & Lirong Zheng & Jing Zhang & Lina Zhao & Wenhuan Huang & Hassan Al Qahtani & Yu Han & Luigi Cavallo & Huabin Zhang, 2024. "Local compressive strain-induced anti-corrosion over isolated Ru-decorated Co3O4 for efficient acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Shiyi Chen & Shishi Zhang & Lei Guo & Lun Pan & Chengxiang Shi & Xiangwen Zhang & Zhen-Feng Huang & Guidong Yang & Ji-Jun Zou, 2023. "Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Hui Su & Wanlin Zhou & Wu Zhou & Yuanli Li & Lirong Zheng & Hui Zhang & Meihuan Liu & Xiuxiu Zhang & Xuan Sun & Yanzhi Xu & Fengchun Hu & Jing Zhang & Tiandou Hu & Qinghua Liu & Shiqiang Wei, 2021. "In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Yubo Chen & Joon Kyo Seo & Yuanmiao Sun & Thomas A. Wynn & Marco Olguin & Minghao Zhang & Jingxian Wang & Shibo Xi & Yonghua Du & Kaidi Yuan & Wei Chen & Adrian C. Fisher & Maoyu Wang & Zhenxing Feng , 2022. "Enhanced oxygen evolution over dual corner-shared cobalt tetrahedra," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Gyu Rac Lee & Jun Kim & Doosun Hong & Ye Ji Kim & Hanhwi Jang & Hyeuk Jin Han & Chang-Kyu Hwang & Donghun Kim & Jin Young Kim & Yeon Sik Jung, 2023. "Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Fan Liao & Kui Yin & Yujin Ji & Wenxiang Zhu & Zhenglong Fan & Youyong Li & Jun Zhong & Mingwang Shao & Zhenhui Kang & Qi Shao, 2023. "Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35631-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.