IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12363.html
   My bibliography  Save this article

Iridium-based double perovskites for efficient water oxidation in acid media

Author

Listed:
  • Oscar Diaz-Morales

    (Leiden Institute of Chemistry, Leiden University)

  • Stefan Raaijman

    (Leiden Institute of Chemistry, Leiden University)

  • Ruud Kortlever

    (Leiden Institute of Chemistry, Leiden University)

  • Patricia J. Kooyman

    (ChemE, Faculty of Applied Sciences, Delft University of Technology
    University of Cape Town)

  • Tim Wezendonk

    (ChemE, Faculty of Applied Sciences, Delft University of Technology)

  • Jorge Gascon

    (ChemE, Faculty of Applied Sciences, Delft University of Technology)

  • W. T. Fu

    (Leiden Institute of Chemistry, Leiden University)

  • Marc T. M. Koper

    (Leiden Institute of Chemistry, Leiden University)

Abstract

The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2.

Suggested Citation

  • Oscar Diaz-Morales & Stefan Raaijman & Ruud Kortlever & Patricia J. Kooyman & Tim Wezendonk & Jorge Gascon & W. T. Fu & Marc T. M. Koper, 2016. "Iridium-based double perovskites for efficient water oxidation in acid media," Nature Communications, Nature, vol. 7(1), pages 1-6, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12363
    DOI: 10.1038/ncomms12363
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12363
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Retuerto & Laura Pascual & Jorge Torrero & Mohamed Abdel Salam & Álvaro Tolosana-Moranchel & Diego Gianolio & Pilar Ferrer & Paula Kayser & Vincent Wilke & Svenja Stiber & Verónica Celorrio & Mo, 2022. "Highly active and stable OER electrocatalysts derived from Sr2MIrO6 for proton exchange membrane water electrolyzers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Sanjiang Pan & Hao Li & Dan Liu & Rui Huang & Xuelei Pan & Dan Ren & Jun Li & Mohsen Shakouri & Qixing Zhang & Manjing Wang & Changchun Wei & Liqiang Mai & Bo Zhang & Ying Zhao & Zhenbin Wang & Michae, 2022. "Efficient and stable noble-metal-free catalyst for acidic water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.