IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p773-d1021878.html
   My bibliography  Save this article

A Hierarchical Porous Cellulose Sponge Modified with Chlorogenic Acid as a Antibacterial Material for Water Disinfection

Author

Listed:
  • En-Jiang Liu

    (College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China)

  • Jia-Xing Huang

    (College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China)

  • Run-Ze Hu

    (College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China)

  • Xiao-Hui Yao

    (College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China)

  • Wei-Guo Zhao

    (College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China)

  • Dong-Yang Zhang

    (College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China)

  • Tao Chen

    (College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China)

Abstract

Water contaminated by microorganisms will seriously endanger public safety, as many diseases are caused by microorganisms, and water disinfection materials offer an effective method to solve this problem. In this work, a hierarchical porous structure cellulose sponge (CS) was constructed as the water disinfection filter substrate, where “long−chain” cellulose served as the skeleton to construct major pores, and “short−chain” cellulose filled the gaps between “long−chain” cellulose to construct minor pores. After CS was covalently modified by chlorogenic acid (CGA) to fabricate cellulose–chlorogenic acid sponge (C−CGAS), a hierarchical porous structure was retained. Due to the hierarchical porous structure, C−CGAS showed good mechanical stability (2.84% unrecoverable strain after 1000 compression cycles). Furthermore, C−CGAS also showed good antibacterial and antifungal abilities due to the antimicrobial ability and high water flux, and C−CGAS could eliminate 95% of E. coli within 0.5 h in the water disinfection test. Due to the stable covalent modification of CGA and its mechanical stability, C−CGAS showed no breakage, and even after nine consecutive use cycles, the antibacterial properties were almost unchanged. Thus, C−CGAS is a reusable and highly efficient water disinfection material. This study provides a new approach for the preparation of recyclable, safe, and efficient water disinfection materials.

Suggested Citation

  • En-Jiang Liu & Jia-Xing Huang & Run-Ze Hu & Xiao-Hui Yao & Wei-Guo Zhao & Dong-Yang Zhang & Tao Chen, 2022. "A Hierarchical Porous Cellulose Sponge Modified with Chlorogenic Acid as a Antibacterial Material for Water Disinfection," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:773-:d:1021878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengzhong Shao & Fritz Vollrath, 2002. "Surprising strength of silkworm silk," Nature, Nature, vol. 418(6899), pages 741-741, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Eliaz & S. Paul & D. Benyamin & A. Cernescu & S. R. Cohen & I. Rosenhek-Goldian & O. Brookstein & M. E. Miali & A. Solomonov & M. Greenblatt & Y. Levy & U. Raviv & A. Barth & U. Shimanovich, 2022. "Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jianming Chen & Arata Tsuchida & Ali D. Malay & Kousuke Tsuchiya & Hiroyasu Masunaga & Yui Tsuji & Mako Kuzumoto & Kenji Urayama & Hirofumi Shintaku & Keiji Numata, 2024. "Replicating shear-mediated self-assembly of spider silk through microfluidics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Gaudia, Garizaldy G., 2022. "Improving the quality of silk yarn and fabric using various edible oils during pre-treatment," MPRA Paper 116655, University Library of Munich, Germany.
    4. Lei Su & Shuhai Jia & Junqiang Ren & Xuefeng Lu & Sheng-Wu Guo & Pengfei Guo & Zhixin Cai & De Lu & Min Niu & Lei Zhuang & Kang Peng & Hongjie Wang, 2023. "Strong yet flexible ceramic aerogel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:773-:d:1021878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.