IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35438-4.html
   My bibliography  Save this article

Limited conservation in cross-species comparison of GLK transcription factor binding suggested wide-spread cistrome divergence

Author

Listed:
  • Xiaoyu Tu

    (Chinese Academy of Sciences
    The Chinese University of Hong Kong
    Shanghai Jiao Tong University)

  • Sibo Ren

    (The Chinese University of Hong Kong)

  • Wei Shen

    (The Chinese University of Hong Kong)

  • Jianjian Li

    (The Chinese University of Hong Kong)

  • Yuxiang Li

    (The Chinese University of Hong Kong)

  • Chuanshun Li

    (Shanghai Jiao Tong University)

  • Yangmeihui Li

    (Shanghai Jiao Tong University)

  • Zhanxiang Zong

    (Huazhong Agricultural University)

  • Weibo Xie

    (Huazhong Agricultural University)

  • Donald Grierson

    (Zhejiang University)

  • Zhangjun Fei

    (Cornell University)

  • Jim Giovannoni

    (Cornell University)

  • Pinghua Li

    (Shandong Agricultural University)

  • Silin Zhong

    (Chinese Academy of Sciences
    The Chinese University of Hong Kong)

Abstract

Non-coding cis-regulatory variants in animal genomes are an important driving force in the evolution of transcription regulation and phenotype diversity. However, cistrome dynamics in plants remain largely underexplored. Here, we compare the binding of GOLDEN2-LIKE (GLK) transcription factors in tomato, tobacco, Arabidopsis, maize and rice. Although the function of GLKs is conserved, most of their binding sites are species-specific. Conserved binding sites are often found near photosynthetic genes dependent on GLK for expression, but sites near non-differentially expressed genes in the glk mutant are nevertheless under purifying selection. The binding sites’ regulatory potential can be predicted by machine learning model using quantitative genome features and TF co-binding information. Our study show that genome cis-variation caused wide-spread TF binding divergence, and most of the TF binding sites are genetically redundant. This poses a major challenge for interpreting the effect of individual sites and highlights the importance of quantitatively measuring TF occupancy.

Suggested Citation

  • Xiaoyu Tu & Sibo Ren & Wei Shen & Jianjian Li & Yuxiang Li & Chuanshun Li & Yangmeihui Li & Zhanxiang Zong & Weibo Xie & Donald Grierson & Zhangjun Fei & Jim Giovannoni & Pinghua Li & Silin Zhong, 2022. "Limited conservation in cross-species comparison of GLK transcription factor binding suggested wide-spread cistrome divergence," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35438-4
    DOI: 10.1038/s41467-022-35438-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35438-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35438-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Levine & Robert Tjian, 2003. "Transcription regulation and animal diversity," Nature, Nature, vol. 424(6945), pages 147-151, July.
    2. Christopher T. Harbison & D. Benjamin Gordon & Tong Ihn Lee & Nicola J. Rinaldi & Kenzie D. Macisaac & Timothy W. Danford & Nancy M. Hannett & Jean-Bosco Tagne & David B. Reynolds & Jane Yoo & Ezra G., 2004. "Transcriptional regulatory code of a eukaryotic genome," Nature, Nature, vol. 431(7004), pages 99-104, September.
    3. Carlos D. Bustamante & Adi Fledel-Alon & Scott Williamson & Rasmus Nielsen & Melissa Todd Hubisz & Stephen Glanowski & David M. Tanenbaum & Thomas J. White & John J. Sninsky & Ryan D. Hernandez & Dani, 2005. "Natural selection on protein-coding genes in the human genome," Nature, Nature, vol. 437(7062), pages 1153-1157, October.
    4. Xiaoyu Tu & María Katherine Mejía-Guerra & Jose A. Valdes Franco & David Tzeng & Po-Yu Chu & Wei Shen & Yingying Wei & Xiuru Dai & Pinghua Li & Edward S. Buckler & Silin Zhong, 2020. "Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    5. Andrew B. Stergachis & Shane Neph & Richard Sandstrom & Eric Haugen & Alex P. Reynolds & Miaohua Zhang & Rachel Byron & Theresa Canfield & Sandra Stelhing-Sun & Kristen Lee & Robert E. Thurman & Shinn, 2014. "Conservation of trans-acting circuitry during mammalian regulatory evolution," Nature, Nature, vol. 515(7527), pages 365-370, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armita Nourmohammad & Michael Lässig, 2011. "Formation of Regulatory Modules by Local Sequence Duplication," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-12, October.
    2. Yue Yuan & Qiang Huo & Ziru Zhang & Qun Wang & Juanxia Wang & Shuaikang Chang & Peng Cai & Karen M. Song & David W. Galbraith & Weixiao Zhang & Long Huang & Rentao Song & Zeyang Ma, 2024. "Decoding the gene regulatory network of endosperm differentiation in maize," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Julian Petersen & Lukas Englmaier & Artem V. Artemov & Irina Poverennaya & Ruba Mahmoud & Thibault Bouderlique & Marketa Tesarova & Ruslan Deviatiiarov & Anett Szilvásy-Szabó & Evgeny E. Akkuratov & D, 2023. "A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    4. Guo-Cheng Yuan & Jun S Liu, 2008. "Genomic Sequence Is Highly Predictive of Local Nucleosome Depletion," PLOS Computational Biology, Public Library of Science, vol. 4(1), pages 1-11, January.
    5. Joshua S Weitz & Philip N Benfey & Ned S Wingreen, 2007. "Evolution, Interactions, and Biological Networks," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-3, January.
    6. Kirsten H ten Tusscher & Paulien Hogeweg, 2011. "Evolution of Networks for Body Plan Patterning; Interplay of Modularity, Robustness and Evolvability," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    7. Manikandan Narayanan & Adrian Vetta & Eric E Schadt & Jun Zhu, 2010. "Simultaneous Clustering of Multiple Gene Expression and Physical Interaction Datasets," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-13, April.
    8. Sourav Bandyopadhyay & Ryan Kelley & Nevan J Krogan & Trey Ideker, 2008. "Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-8, April.
    9. Alex N Nguyen Ba & Bob Strome & Jun Jie Hua & Jonathan Desmond & Isabelle Gagnon-Arsenault & Eric L Weiss & Christian R Landry & Alan M Moses, 2014. "Detecting Functional Divergence after Gene Duplication through Evolutionary Changes in Posttranslational Regulatory Sequences," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-15, December.
    10. Eilon Sharon & Shai Lubliner & Eran Segal, 2008. "A Feature-Based Approach to Modeling Protein–DNA Interactions," PLOS Computational Biology, Public Library of Science, vol. 4(8), pages 1-17, August.
    11. Xiaoke Ma & Long Gao & Georgios Karamanlidis & Peng Gao & Chi Fung Lee & Lorena Garcia-Menendez & Rong Tian & Kai Tan, 2015. "Revealing Pathway Dynamics in Heart Diseases by Analyzing Multiple Differential Networks," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-19, June.
    12. Shojaie Ali & Michailidis George, 2010. "Network Enrichment Analysis in Complex Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-36, May.
    13. Phaedra Agius & Aaron Arvey & William Chang & William Stafford Noble & Christina Leslie, 2010. "High Resolution Models of Transcription Factor-DNA Affinities Improve In Vitro and In Vivo Binding Predictions," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-12, September.
    14. Kenzie D MacIsaac & Ernest Fraenkel, 2006. "Practical Strategies for Discovering Regulatory DNA Sequence Motifs," PLOS Computational Biology, Public Library of Science, vol. 2(4), pages 1-10, April.
    15. Zing Tsung-Yeh Tsai & Shin-Han Shiu & Huai-Kuang Tsai, 2015. "Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-22, August.
    16. Gross, Eitan, 2015. "Effect of environmental stress on regulation of gene expression in the yeast," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 224-235.
    17. Buki Kwon & Mervin M. Fansler & Neil D. Patel & Jihye Lee & Weirui Ma & Christine Mayr, 2022. "Enhancers regulate 3′ end processing activity to control expression of alternative 3′UTR isoforms," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Erik Andrews & Yue Wang & Tian Xia & Wenqing Cheng & Chao Cheng, 2017. "Contextual Refinement of Regulatory Targets Reveals Effects on Breast Cancer Prognosis of the Regulome," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-20, January.
    19. Wei-Sheng Wu & Fu-Jou Lai, 2016. "Detecting Cooperativity between Transcription Factors Based on Functional Coherence and Similarity of Their Target Gene Sets," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-12, September.
    20. Rahul Siddharthan & Eric D Siggia & Erik van Nimwegen, 2005. "PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny," PLOS Computational Biology, Public Library of Science, vol. 1(7), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35438-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.