IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30525-y.html
   My bibliography  Save this article

Enhancers regulate 3′ end processing activity to control expression of alternative 3′UTR isoforms

Author

Listed:
  • Buki Kwon

    (Memorial Sloan Kettering Cancer Center)

  • Mervin M. Fansler

    (Memorial Sloan Kettering Cancer Center
    Weill Cornell Graduate College)

  • Neil D. Patel

    (Memorial Sloan Kettering Cancer Center)

  • Jihye Lee

    (Memorial Sloan Kettering Cancer Center)

  • Weirui Ma

    (Memorial Sloan Kettering Cancer Center)

  • Christine Mayr

    (Memorial Sloan Kettering Cancer Center
    Weill Cornell Graduate College)

Abstract

Multi-UTR genes are widely transcribed and express their alternative 3′UTR isoforms in a cell type-specific manner. As transcriptional enhancers regulate mRNA expression, we investigated if they also regulate 3′UTR isoform expression. Endogenous enhancer deletion of the multi-UTR gene PTEN did not impair transcript production but prevented 3′UTR isoform switching which was recapitulated by silencing of an enhancer-bound transcription factor. In reporter assays, enhancers increase transcript production when paired with single-UTR gene promoters. However, when combined with multi-UTR gene promoters, they change 3′UTR isoform expression by increasing 3′ end processing activity of polyadenylation sites. Processing activity of polyadenylation sites is affected by transcription factors, including NF-κB and MYC, transcription elongation factors, chromatin remodelers, and histone acetyltransferases. As endogenous cell type-specific enhancers are associated with genes that increase their short 3′UTRs in a cell type-specific manner, our data suggest that transcriptional enhancers integrate cellular signals to regulate cell type-and condition-specific 3′UTR isoform expression.

Suggested Citation

  • Buki Kwon & Mervin M. Fansler & Neil D. Patel & Jihye Lee & Weirui Ma & Christine Mayr, 2022. "Enhancers regulate 3′ end processing activity to control expression of alternative 3′UTR isoforms," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30525-y
    DOI: 10.1038/s41467-022-30525-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30525-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30525-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Levine & Robert Tjian, 2003. "Transcription regulation and animal diversity," Nature, Nature, vol. 424(6945), pages 147-151, July.
    2. Xiuye Wang & Thomas Hennig & Adam W. Whisnant & Florian Erhard & Bhupesh K. Prusty & Caroline C. Friedel & Elmira Forouzmand & William Hu & Luke Erber & Yue Chen & Rozanne M. Sandri-Goldin & Lars Dölk, 2020. "Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    3. Sara J. Dubbury & Paul L. Boutz & Phillip A. Sharp, 2018. "CDK12 regulates DNA repair genes by suppressing intronic polyadenylation," Nature, Nature, vol. 564(7734), pages 141-145, December.
    4. Chioniso P. Masamha & Zheng Xia & Jingxuan Yang & Todd R. Albrecht & Min Li & Ann-Bin Shyu & Wei Li & Eric J. Wagner, 2014. "CFIm25 links alternative polyadenylation to glioblastoma tumour suppression," Nature, Nature, vol. 510(7505), pages 412-416, June.
    5. Len A. Pennacchio & Nadav Ahituv & Alan M. Moses & Shyam Prabhakar & Marcelo A. Nobrega & Malak Shoukry & Simon Minovitsky & Inna Dubchak & Amy Holt & Keith D. Lewis & Ingrid Plajzer-Frick & Jennifer , 2006. "In vivo enhancer analysis of human conserved non-coding sequences," Nature, Nature, vol. 444(7118), pages 499-502, November.
    6. Jean-Christophe Dantonel & Kanneganti G. K. Murthy & James L. Manley & Laszlo Tora, 1997. "Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA," Nature, Nature, vol. 389(6649), pages 399-402, September.
    7. Malgorzata Krajewska & Ruben Dries & Andrew V. Grassetti & Sofia Dust & Yang Gao & Hao Huang & Bandana Sharma & Daniel S. Day & Nicholas Kwiatkowski & Monica Pomaville & Oliver Dodd & Edmond Chipumuro, 2019. "CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    8. Jing Zhang & Donghoon Lee & Vineet Dhiman & Peng Jiang & Jie Xu & Patrick McGillivray & Hongbo Yang & Jason Liu & William Meyerson & Declan Clarke & Mengting Gu & Shantao Li & Shaoke Lou & Jinrui Xu &, 2020. "An integrative ENCODE resource for cancer genomics," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    9. Susan McCracken & Nova Fong & Krassimir Yankulov & Scott Ballantyne & Guohua Pan & Jack Greenblatt & Scott D. Patterson & Marvin Wickens & David L. Bentley, 1997. "The C-terminal domain of RNA polymerase II couples mRNA processing to transcription," Nature, Nature, vol. 385(6614), pages 357-361, January.
    10. Fan Lai & Alessandro Gardini & Anda Zhang & Ramin Shiekhattar, 2015. "Integrator mediates the biogenesis of enhancer RNAs," Nature, Nature, vol. 525(7569), pages 399-403, September.
    11. Brian M. Zid & Erin K. O’Shea, 2014. "Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast," Nature, Nature, vol. 514(7520), pages 117-121, October.
    12. Andrzej J. Rutkowski & Florian Erhard & Anne L’Hernault & Thomas Bonfert & Markus Schilhabel & Colin Crump & Philip Rosenstiel & Stacey Efstathiou & Ralf Zimmer & Caroline C. Friedel & Lars Dölken, 2015. "Widespread disruption of host transcription termination in HSV-1 infection," Nature Communications, Nature, vol. 6(1), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yange Cui & Luyang Wang & Qingbao Ding & Jihae Shin & Joel Cassel & Qin Liu & Joseph M. Salvino & Bin Tian, 2023. "Elevated pre-mRNA 3′ end processing activity in cancer cells renders vulnerability to inhibition of cleavage and polyadenylation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Valter Bergant & Daniel Schnepf & Niklas Andrade Krätzig & Philipp Hubel & Christian Urban & Thomas Engleitner & Ronald Dijkman & Bernhard Ryffel & Katja Steiger & Percy A. Knolle & Georg Kochs & Rola, 2023. "mRNA 3’UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Maria C. Tanzer & Isabell Bludau & Che A. Stafford & Veit Hornung & Matthias Mann, 2021. "Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Laura Curti & Sara Rohban & Nicola Bianchi & Ottavio Croci & Adrian Andronache & Sara Barozzi & Michela Mattioli & Fernanda Ricci & Elena Pastori & Silvia Sberna & Simone Bellotti & Anna Accialini & R, 2024. "CDK12 controls transcription at damaged genes and prevents MYC-induced transcription-replication conflicts," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Timothy H-C Hsiau & Claudiu Diaconu & Connie A Myers & Jongwoo Lee & Constance L Cepko & Joseph C Corbo, 2007. "The Cis-regulatory Logic of the Mammalian Photoreceptor Transcriptional Network," PLOS ONE, Public Library of Science, vol. 2(7), pages 1-16, July.
    6. M. G. Filippone & D. Gaglio & R. Bonfanti & F. A. Tucci & E. Ceccacci & R. Pennisi & M. Bonanomi & G. Jodice & M. Tillhon & F. Montani & G. Bertalot & S. Freddi & M. Vecchi & A. Taglialatela & M. Roma, 2022. "CDK12 promotes tumorigenesis but induces vulnerability to therapies inhibiting folate one-carbon metabolism in breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Lara Djakovic & Thomas Hennig & Katharina Reinisch & Andrea Milić & Adam W. Whisnant & Katharina Wolf & Elena Weiß & Tobias Haas & Arnhild Grothey & Christopher S. Jürges & Michael Kluge & Elmar Wolf , 2023. "The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Michelle Dietzen & Haoran Zhai & Olivia Lucas & Oriol Pich & Christopher Barrington & Wei-Ting Lu & Sophia Ward & Yanping Guo & Robert E. Hynds & Simone Zaccaria & Charles Swanton & Nicholas McGranaha, 2024. "Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    9. Jun Inamo & Akari Suzuki & Mahoko Takahashi Ueda & Kensuke Yamaguchi & Hiroshi Nishida & Katsuya Suzuki & Yuko Kaneko & Tsutomu Takeuchi & Hiroaki Hatano & Kazuyoshi Ishigaki & Yasushi Ishihama & Kazu, 2024. "Long-read sequencing for 29 immune cell subsets reveals disease-linked isoforms," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Jin Woo Oh & Michael A. Beer, 2024. "Gapped-kmer sequence modeling robustly identifies regulatory vocabularies and distal enhancers conserved between evolutionarily distant mammals," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Erik Andrews & Yue Wang & Tian Xia & Wenqing Cheng & Chao Cheng, 2017. "Contextual Refinement of Regulatory Targets Reveals Effects on Breast Cancer Prognosis of the Regulome," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-20, January.
    12. Armita Nourmohammad & Michael Lässig, 2011. "Formation of Regulatory Modules by Local Sequence Duplication," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-12, October.
    13. Krishanpal Anamika & Àkos Gyenis & Laetitia Poidevin & Olivier Poch & Làszlò Tora, 2012. "RNA Polymerase II Pausing Downstream of Core Histone Genes Is Different from Genes Producing Polyadenylated Transcripts," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    14. Thibault Houles & Geneviève Lavoie & Sami Nourreddine & Winnie Cheung & Éric Vaillancourt-Jean & Célia M. Guérin & Mathieu Bouttier & Benoit Grondin & Sichun Lin & Marc K. Saba-El-Leil & Stephane Ange, 2022. "CDK12 is hyperactivated and a synthetic-lethal target in BRAF-mutated melanoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Victor Lopez Soriano & Alfredo Dueñas Rey & Rajarshi Mukherjee & Frauke Coppieters & Miriam Bauwens & Andy Willaert & Elfride De Baere, 2024. "Multi-omics analysis in human retina uncovers ultraconserved cis-regulatory elements at rare eye disease loci," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Mitsutaka Kadota & Howard H Yang & Nan Hu & Chaoyu Wang & Ying Hu & Philip R Taylor & Kenneth H Buetow & Maxwell P Lee, 2007. "Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome," PLOS Genetics, Public Library of Science, vol. 3(5), pages 1-11, May.
    17. Xiaochuan Liu & Hao Chen & Zekun Li & Xiaoxiao Yang & Wen Jin & Yuting Wang & Jian Zheng & Long Li & Chenghao Xuan & Jiapei Yuan & Yang Yang, 2024. "InPACT: a computational method for accurate characterization of intronic polyadenylation from RNA sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Kenzui Taniue & Anzu Sugawara & Chao Zeng & Han Han & Xinyue Gao & Yuki Shimoura & Atsuko Nakanishi Ozeki & Rena Onoguchi-Mizutani & Masahide Seki & Yutaka Suzuki & Michiaki Hamada & Nobuyoshi Akimits, 2024. "The MTR4/hnRNPK complex surveils aberrant polyadenylated RNAs with multiple exons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Mwikali Kioko & Alena Pance & Shaban Mwangi & David Goulding & Alison Kemp & Martin Rono & Lynette Isabella Ochola-Oyier & Pete C. Bull & Philip Bejon & Julian C. Rayner & Abdirahman I. Abdi, 2023. "Extracellular vesicles could be a putative posttranscriptional regulatory mechanism that shapes intracellular RNA levels in Plasmodium falciparum," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Lucas Henrion & Juan Andres Martinez & Vincent Vandenbroucke & Mathéo Delvenne & Samuel Telek & Andrew Zicler & Alexander Grünberger & Frank Delvigne, 2023. "Fitness cost associated with cell phenotypic switching drives population diversification dynamics and controllability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30525-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.