IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030081.html
   My bibliography  Save this article

Cooperative Gating and Spatial Organization of Membrane Proteins through Elastic Interactions

Author

Listed:
  • Tristan Ursell
  • Kerwyn Casey Huang
  • Eric Peterson
  • Rob Phillips

Abstract

Biological membranes are elastic media in which the presence of a transmembrane protein leads to local bilayer deformation. The energetics of deformation allow two membrane proteins in close proximity to influence each other's equilibrium conformation via their local deformations, and spatially organize the proteins based on their geometry. We use the mechanosensitive channel of large conductance (MscL) as a case study to examine the implications of bilayer-mediated elastic interactions on protein conformational statistics and clustering. The deformations around MscL cost energy on the order of 10 kBT and extend ∼3 nm from the protein edge, as such elastic forces induce cooperative gating, and we propose experiments to measure these effects. Additionally, since elastic interactions are coupled to protein conformation, we find that conformational changes can severely alter the average separation between two proteins. This has important implications for how conformational changes organize membrane proteins into functional groups within membranes.: Membranes form flexible boundaries between the interior of a cell and its surrounding environment. Proteins that reside in the membrane are responsible for transporting materials and transmitting signals across these membranes to regulate processes crucial for cellular survival. These proteins respond to stimuli by altering their shape to perform specific tasks, such as channel proteins, which allow the flow of ions in only one conformation. However, the membrane is not just a substrate for these proteins, rather it is an elastic medium that bends and changes thickness to accommodate the proteins embedded in it. Thus, the membrane plays a role in the function of many proteins by affecting which conformation is energetically favorable. Using a physical model that combines membrane elastic properties with the structure of a typical membrane protein, we show that the membrane can communicate structural and hence conformational information between membrane proteins in close proximity. Hence, proteins can “talk” and “respond” to each other using the membrane as a generic “voice.” We show that these membrane-mediated elastic forces can ultimately drive proteins of the same shape to cluster together, leading to spatial organization of proteins within the membrane.

Suggested Citation

  • Tristan Ursell & Kerwyn Casey Huang & Eric Peterson & Rob Phillips, 2007. "Cooperative Gating and Spatial Organization of Membrane Proteins through Elastic Interactions," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-10, May.
  • Handle: RePEc:plo:pcbi00:0030081
    DOI: 10.1371/journal.pcbi.0030081
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030081
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030081&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dennis Bray & Matthew D. Levin & Carl J. Morton-Firth, 1998. "Receptor clustering as a cellular mechanism to control sensitivity," Nature, Nature, vol. 393(6680), pages 85-88, May.
    2. Sergei Sukharev & Monica Betanzos & Chien-Sung Chiang & H. Robert Guy, 2001. "The gating mechanism of the large mechanosensitive channel MscL," Nature, Nature, vol. 409(6821), pages 720-724, February.
    3. Eduardo Perozo & D. Marien Cortes & Pornthep Sompornpisut & Anna Kloda & Boris Martinac, 2002. "Open channel structure of MscL and the gating mechanism of mechanosensitive channels," Nature, Nature, vol. 418(6901), pages 942-948, August.
    4. J. Fournier, 1999. "Microscopic membrane elasticity and interactions among membrane inclusions: interplay between the shape, dilation, tilt and tilt-difference modes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(2), pages 261-272, September.
    5. P.G. Dommersnes & J.-B. Fournier, 1999. "N-body study of anisotropic membrane inclusions: Membrane mediated interactions and ordered aggregation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 12(1), pages 9-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    2. Yining Jiang & Batiste Thienpont & Vinay Sapuru & Richard K. Hite & Jeremy S. Dittman & James N. Sturgis & Simon Scheuring, 2022. "Membrane-mediated protein interactions drive membrane protein organization," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Yangang Pan & Jingyu Zhan & Yining Jiang & Di Xia & Simon Scheuring, 2023. "A concerted ATPase cycle of the protein transporter AAA-ATPase Bcs1," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Mount & Grigory Maksaev & Brock T. Summers & James A. J. Fitzpatrick & Peng Yuan, 2022. "Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Christopher T Lee & Justin G Laughlin & Nils Angliviel de La Beaumelle & Rommie E Amaro & J Andrew McCammon & Ravi Ramamoorthi & Michael Holst & Padmini Rangamani, 2020. "3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-35, April.
    3. Stephan Eismann & Robert G Endres, 2015. "Protein Connectivity in Chemotaxis Receptor Complexes," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-21, December.
    4. Yuqi Qin & Daqi Yu & Dan Wu & Jiangqing Dong & William Thomas Li & Chang Ye & Kai Chit Cheung & Yingyi Zhang & Yun Xu & YongQiang Wang & Yun Stone Shi & Shangyu Dang, 2023. "Cryo-EM structure of TMEM63C suggests it functions as a monomer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Kenneth L Ho & Heather A Harrington, 2010. "Bistability in Apoptosis by Receptor Clustering," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-9, October.
    6. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    7. Derek J Cashman & Davi R Ortega & Igor B Zhulin & Jerome Baudry, 2013. "Homology Modeling of the CheW Coupling Protein of the Chemotaxis Signaling Complex," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    8. Kenjiro Yoshimura & Kazuko Iida & Hidetoshi Iida, 2021. "MCAs in Arabidopsis are Ca2+-permeable mechanosensitive channels inherently sensitive to membrane tension," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Jin Li & William D. Jamieson & Pantelitsa Dimitriou & Wen Xu & Paul Rohde & Boris Martinac & Matthew Baker & Bruce W. Drinkwater & Oliver K. Castell & David A. Barrow, 2022. "Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Robert G Endres & Joseph J Falke & Ned S Wingreen, 2007. "Chemotaxis Receptor Complexes: From Signaling to Assembly," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-9, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.