IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30276-w.html
   My bibliography  Save this article

On-chip nanophotonic topological rainbow

Author

Listed:
  • Cuicui Lu

    (Beijing Institute of Technology
    Shandong Normal University)

  • Yi-Zhi Sun

    (Jinan University)

  • Chenyang Wang

    (Beijing Institute of Technology)

  • Hongyu Zhang

    (Beijing Institute of Technology)

  • Wen Zhao

    (Beijing Institute of Technology)

  • Xiaoyong Hu

    (Peking University)

  • Meng Xiao

    (Wuhan University)

  • Wei Ding

    (Jinan University)

  • Yong-Chun Liu

    (Tsinghua University)

  • C. T. Chan

    (The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon)

Abstract

The era of Big Data requires nanophotonic chips to have large information processing capacity. Multiple frequency on-chip nanophotonic devices are highly desirable for density integration, but such devices are more susceptible to structural imperfection because of their nano-scale. Topological photonics provides a robust platform for next-generation nanophotonic chips. Here we give an experimental report of an on-chip nanophotonic topological rainbow realized by employing a translational deformation freedom as a synthetic dimension. The topological rainbow can separate, slow, and trap topological photonic states of different frequencies into different positions. A homemade scattering scanning near-field optical microscope with high resolution is introduced to directly measure the topological rainbow effect of the silicon-based photonic chip. The topological rainbow based on synthetic dimension have no restrictions for optical lattice types, symmetries, materials, wavelength band, and is easy for on-chip integration. This work builds a bridge between silicon chip technologies and topological photonics.

Suggested Citation

  • Cuicui Lu & Yi-Zhi Sun & Chenyang Wang & Hongyu Zhang & Wen Zhao & Xiaoyong Hu & Meng Xiao & Wei Ding & Yong-Chun Liu & C. T. Chan, 2022. "On-chip nanophotonic topological rainbow," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30276-w
    DOI: 10.1038/s41467-022-30276-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30276-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30276-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zheng Wang & Yidong Chong & J. D. Joannopoulos & Marin Soljačić, 2009. "Observation of unidirectional backscattering-immune topological electromagnetic states," Nature, Nature, vol. 461(7265), pages 772-775, October.
    2. Xin-Tao He & En-Tao Liang & Jia-Jun Yuan & Hao-Yang Qiu & Xiao-Dong Chen & Fu-Li Zhao & Jian-Wen Dong, 2019. "A silicon-on-insulator slab for topological valley transport," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Wen-Jie Chen & Meng Xiao & C. T. Chan, 2016. "Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Zhao & Xianfeng Wu & Doudou Zhang & Xiaoting Xu & Xiaonong Wang & Xiaopeng Zhao, 2024. "Amber rainbow ribbon effect in broadband optical metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Xuewei Zhang & Chaohua Wu & Mou Yan & Ni Liu & Ziyu Wang & Gang Chen, 2024. "Observation of continuum Landau modes in non-Hermitian electric circuits," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Yanan Wang & Hai-Xiao Wang & Li Liang & Weiwei Zhu & Longzhen Fan & Zhi-Kang Lin & Feifei Li & Xiao Zhang & Pi-Gang Luan & Yin Poo & Jian-Hua Jiang & Guang-Yu Guo, 2023. "Hybrid topological photonic crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Anton Vakulenko & Svetlana Kiriushechkina & Daria Smirnova & Sriram Guddala & Filipp Komissarenko & Andrea Alù & Monica Allen & Jeffery Allen & Alexander B. Khanikaev, 2023. "Adiabatic topological photonic interfaces," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Byoung-Uk Sohn & Yue-Xin Huang & Ju Won Choi & George F. R. Chen & Doris K. T. Ng & Shengyuan A. Yang & Dawn T. H. Tan, 2022. "A topological nonlinear parametric amplifier," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Jing Yang & Yuanzhen Li & Yumeng Yang & Xinrong Xie & Zijian Zhang & Jiale Yuan & Han Cai & Da-Wei Wang & Fei Gao, 2024. "Realization of all-band-flat photonic lattices," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Qianlong Kang & Fujia Chen & Hongyong Mao & Keya Zhou & Kai Guo & Shutian Liu & Zhongyi Guo, 2023. "Dual-band valley-protected topological edge states in graphene-like phononic crystals with waveguide," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-7, March.
    8. Xiang Xi & Bei Yan & Linyun Yang & Yan Meng & Zhen-Xiao Zhu & Jing-Ming Chen & Ziyao Wang & Peiheng Zhou & Perry Ping Shum & Yihao Yang & Hongsheng Chen & Subhaskar Mandal & Gui-Geng Liu & Baile Zhang, 2023. "Topological antichiral surface states in a magnetic Weyl photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Yumeng Yang & Xinrong Xie & Yuanzhen Li & Zijian Zhang & Yiwei Peng & Chi Wang & Erping Li & Ying Li & Hongsheng Chen & Fei Gao, 2022. "Radiative anti-parity-time plasmonics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Chunxue Wang & Daming Zhang & Jian Yue & Xucheng Zhang & Hang Lin & Xiangyi Sun & Anqi Cui & Tong Zhang & Changming Chen & Teng Fei, 2023. "Dual-layer optical encryption fluorescent polymer waveguide chip based on optical pulse-code modulation technique," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Alexander B. Khanikaev & Andrea Alù, 2024. "Topological photonics: robustness and beyond," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    13. Aditya Tripathi & Chibuzor Fabian Ugwu & Viktar S. Asadchy & Ihar Faniayeu & Ivan Kravchenko & Shanhui Fan & Yuri Kivshar & Jason Valentine & Sergey S. Kruk, 2024. "Nanoscale optical nonreciprocity with nonlinear metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Jian-Wei Liu & Fu-Long Shi & Ke Shen & Xiao-Dong Chen & Ke Chen & Wen-Jie Chen & Jian-Wen Dong, 2023. "Antichiral surface states in time-reversal-invariant photonic semimetals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Song Han & Yunda Chua & Yongquan Zeng & Bofeng Zhu & Chongwu Wang & Bo Qiang & Yuhao Jin & Qian Wang & Lianhe Li & Alexander Giles Davies & Edmund Harold Linfield & Yidong Chong & Baile Zhang & Qi Jie, 2023. "Photonic Majorana quantum cascade laser with polarization-winding emission," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Pawel S. Jung & Georgios G. Pyrialakos & Fan O. Wu & Midya Parto & Mercedeh Khajavikhan & Wieslaw Krolikowski & Demetrios N. Christodoulides, 2022. "Thermal control of the topological edge flow in nonlinear photonic lattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Xiaobin Dai & Xuanyu Zhang & Lijuan Gao & Ziyang Xu & Li-Tang Yan, 2022. "Topology mediates transport of nanoparticles in macromolecular networks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Lizhen Lu & Kun Ding & Emanuele Galiffi & Xikui Ma & Tianyu Dong & J. B. Pendry, 2021. "Revealing topology with transformation optics," Nature Communications, Nature, vol. 12(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30276-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.