IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34851-z.html
   My bibliography  Save this article

High-fidelity qutrit entangling gates for superconducting circuits

Author

Listed:
  • Noah Goss

    (University of California, Berkeley
    Computational Research Division, Lawrence Berkeley National Laboratory)

  • Alexis Morvan

    (Computational Research Division, Lawrence Berkeley National Laboratory)

  • Brian Marinelli

    (University of California, Berkeley
    Computational Research Division, Lawrence Berkeley National Laboratory)

  • Bradley K. Mitchell

    (University of California, Berkeley)

  • Long B. Nguyen

    (Computational Research Division, Lawrence Berkeley National Laboratory)

  • Ravi K. Naik

    (University of California, Berkeley
    Computational Research Division, Lawrence Berkeley National Laboratory)

  • Larry Chen

    (University of California, Berkeley)

  • Christian Jünger

    (Computational Research Division, Lawrence Berkeley National Laboratory)

  • John Mark Kreikebaum

    (University of California, Berkeley
    Materials Science Division, Lawrence Berkeley National Laboratory)

  • David I. Santiago

    (Computational Research Division, Lawrence Berkeley National Laboratory)

  • Joel J. Wallman

    (Keysight Technologies Canada)

  • Irfan Siddiqi

    (University of California, Berkeley
    Computational Research Division, Lawrence Berkeley National Laboratory
    Materials Science Division, Lawrence Berkeley National Laboratory)

Abstract

Ternary quantum information processing in superconducting devices poses a promising alternative to its more popular binary counterpart through larger, more connected computational spaces and proposed advantages in quantum simulation and error correction. Although generally operated as qubits, transmons have readily addressable higher levels, making them natural candidates for operation as quantum three-level systems (qutrits). Recent works in transmon devices have realized high fidelity single qutrit operation. Nonetheless, effectively engineering a high-fidelity two-qutrit entanglement remains a central challenge for realizing qutrit processing in a transmon device. In this work, we apply the differential AC Stark shift to implement a flexible, microwave-activated, and dynamic cross-Kerr entanglement between two fixed-frequency transmon qutrits, expanding on work performed for the ZZ interaction with transmon qubits. We then use this interaction to engineer efficient, high-fidelity qutrit CZ† and CZ gates, with estimated process fidelities of 97.3(1)% and 95.2(3)% respectively, a significant step forward for operating qutrits on a multi-transmon device.

Suggested Citation

  • Noah Goss & Alexis Morvan & Brian Marinelli & Bradley K. Mitchell & Long B. Nguyen & Ravi K. Naik & Larry Chen & Christian Jünger & John Mark Kreikebaum & David I. Santiago & Joel J. Wallman & Irfan S, 2022. "High-fidelity qutrit entangling gates for superconducting circuits," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34851-z
    DOI: 10.1038/s41467-022-34851-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34851-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34851-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    2. Alexander Erhard & Joel J. Wallman & Lukas Postler & Michael Meth & Roman Stricker & Esteban A. Martinez & Philipp Schindler & Thomas Monz & Joseph Emerson & Rainer Blatt, 2019. "Characterizing large-scale quantum computers via cycle benchmarking," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    3. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. A. Fedorov & L. Steffen & M. Baur & M. P. da Silva & A. Wallraff, 2012. "Implementation of a Toffoli gate with superconducting circuits," Nature, Nature, vol. 481(7380), pages 170-172, January.
    5. P. Campagne-Ibarcq & A. Eickbusch & S. Touzard & E. Zalys-Geller & N. E. Frattini & V. V. Sivak & P. Reinhold & S. Puri & S. Shankar & R. J. Schoelkopf & L. Frunzio & M. Mirrahimi & M. H. Devoret, 2020. "Quantum error correction of a qubit encoded in grid states of an oscillator," Nature, Nature, vol. 584(7821), pages 368-372, August.
    6. Sebastian Krinner & Nathan Lacroix & Ants Remm & Agustin Paolo & Elie Genois & Catherine Leroux & Christoph Hellings & Stefania Lazar & Francois Swiadek & Johannes Herrmann & Graham J. Norris & Christ, 2022. "Realizing repeated quantum error correction in a distance-three surface code," Nature, Nature, vol. 605(7911), pages 669-674, May.
    7. Chao Song & Shi-Biao Zheng & Pengfei Zhang & Kai Xu & Libo Zhang & Qiujiang Guo & Wuxin Liu & Da Xu & Hui Deng & Keqiang Huang & Dongning Zheng & Xiaobo Zhu & H. Wang, 2017. "Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Medina-Armendariz, Miguel A. & Quezada, L.F. & Sun, Guo-Hua & Dong, Shi-Hai, 2024. "Exploring entanglement dynamics in an optomechanical cavity with a type-V qutrit and quantized two-mode field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Hyyppä & Suman Kundu & Chun Fai Chan & András Gunyhó & Juho Hotari & David Janzso & Kristinn Juliusson & Olavi Kiuru & Janne Kotilahti & Alessandro Landra & Wei Liu & Fabian Marxer & Akseli Mäkin, 2022. "Unimon qubit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. X. L. He & Yong Lu & D. Q. Bao & Hang Xue & W. B. Jiang & Z. Wang & A. F. Roudsari & Per Delsing & J. S. Tsai & Z. R. Lin, 2023. "Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Ziqian Li & Tanay Roy & David Rodríguez Pérez & Kan-Heng Lee & Eliot Kapit & David I. Schuster, 2024. "Autonomous error correction of a single logical qubit using two transmons," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    4. Shingo Kono & Jiahe Pan & Mahdi Chegnizadeh & Xuxin Wang & Amir Youssefi & Marco Scigliuzzo & Tobias J. Kippenberg, 2024. "Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Suhas Ganjam & Yanhao Wang & Yao Lu & Archan Banerjee & Chan U Lei & Lev Krayzman & Kim Kisslinger & Chenyu Zhou & Ruoshui Li & Yichen Jia & Mingzhao Liu & Luigi Frunzio & Robert J. Schoelkopf, 2024. "Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Dennis Willsch & Madita Willsch & Fengping Jin & Hans De Raedt & Kristel Michielsen, 2023. "Large-Scale Simulation of Shor’s Quantum Factoring Algorithm," Mathematics, MDPI, vol. 11(19), pages 1-38, October.
    7. Yanwu Gu & Wei-Feng Zhuang & Xudan Chai & Dong E. Liu, 2023. "Benchmarking universal quantum gates via channel spectrum," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Tong Liu & Shang Liu & Hekang Li & Hao Li & Kaixuan Huang & Zhongcheng Xiang & Xiaohui Song & Kai Xu & Dongning Zheng & Heng Fan, 2023. "Observation of entanglement transition of pseudo-random mixed states," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    10. Pavel Hrmo & Benjamin Wilhelm & Lukas Gerster & Martin W. Mourik & Marcus Huber & Rainer Blatt & Philipp Schindler & Thomas Monz & Martin Ringbauer, 2023. "Native qudit entanglement in a trapped ion quantum processor," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    11. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    12. Huang, Fangyu & Tan, Xiaoqing & Huang, Rui & Xu, Qingshan, 2022. "Variational convolutional neural networks classifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    13. Jesús Fernández-Villaverde & Isaiah J. Hull, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," NBER Working Papers 31326, National Bureau of Economic Research, Inc.
    14. Maryam Moghimi & Herbert W. Corley, 2020. "Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions," Data, MDPI, vol. 5(3), pages 1-18, September.
    15. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    16. Xianchuang Pan & Yuxuan Zhou & Haolan Yuan & Lifu Nie & Weiwei Wei & Libo Zhang & Jian Li & Song Liu & Zhi Hao Jiang & Gianluigi Catelani & Ling Hu & Fei Yan & Dapeng Yu, 2022. "Engineering superconducting qubits to reduce quasiparticles and charge noise," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Ducuara, Andrés F. & Susa, Cristian E. & Reina, John H., 2022. "Emergence of maximal hidden quantum correlations and its trade-off with the filtering probability in dissipative two-qubit systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    18. Nikolaos Schetakis & Davit Aghamalyan & Michael Boguslavsky & Agnieszka Rees & Marc Rakotomalala & Paul Robert Griffin, 2024. "Quantum Machine Learning for Credit Scoring," Mathematics, MDPI, vol. 12(9), pages 1-12, May.
    19. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Reis, Mauricio & Oliveira, Adelcio C., 2022. "A complementary resource relation of concurrence and roughness for a two-qubit state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34851-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.