IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34671-1.html
   My bibliography  Save this article

Disulfiram ameliorates nonalcoholic steatohepatitis by modulating the gut microbiota and bile acid metabolism

Author

Listed:
  • Yuanyuan Lei

    (Army Medical University)

  • Li Tang

    (Army Medical University)

  • Qiao Chen

    (Army Medical University)

  • Lingyi Wu

    (Army Medical University)

  • Wei He

    (Army Medical University)

  • Dianji Tu

    (Army Medical University
    Army Medical University)

  • Sumin Wang

    (Army Medical University)

  • Yuyang Chen

    (Army Medical University)

  • Shuang Liu

    (Army Medical University)

  • Zhuo Xie

    (Army Medical University)

  • Hong Wei

    (Jinfeng Laboratory
    Army Medical University)

  • Shiming Yang

    (Army Medical University
    Guangyang Bay Laboratory
    Chongqing Municipality Clinical Research Center for Gastroenterology)

  • Bo Tang

    (Army Medical University)

Abstract

Nonalcoholic steatohepatitis (NASH) has been linked with the gut-liver axis. Here, we investigate the potential for repurposing disulfiram (DSF), a drug commonly used to treat chronic alcoholism, for NASH. Using a mouse model, we show that DSF ameliorates NASH in a gut microbiota-dependent manner. DSF modulates the gut microbiota and directly inhibits the growth of Clostridium. Administration of Clostridium abolishes the ameliorating effects of DSF on NASH. Mechanistically, DSF reduces Clostridium-mediated 7α-dehydroxylation activity to suppress secondary bile acid biosynthesis, which in turn activates hepatic farnesoid X receptor signaling to ameliorate NASH. To assess the effect of DSF on human gut microbiota, we performed a self-controlled clinical trial (ChiCTR2100048035), including 23 healthy volunteers who received 250 mg-qd DSF for 7 days. The primary objective outcomes were to assess the effects of the intervention on the diversity, composition and functional profile of gut microbiota. The pilot study shows that DSF also reduces Clostridium-mediated 7α-dehydroxylation activity. All volunteers tolerated DSF well and there were no serious adverse events in the 7-day follow-up period. Transferring fecal microbiota obtained from DSF-treated humans into germ-free mice ameliorates NASH. Collectively, the observations of similar ameliorating effects of DSF on mice and humans suggest that DSF ameliorates NASH by modulating the gut microbiota and bile acid metabolism.

Suggested Citation

  • Yuanyuan Lei & Li Tang & Qiao Chen & Lingyi Wu & Wei He & Dianji Tu & Sumin Wang & Yuyang Chen & Shuang Liu & Zhuo Xie & Hong Wei & Shiming Yang & Bo Tang, 2022. "Disulfiram ameliorates nonalcoholic steatohepatitis by modulating the gut microbiota and bile acid metabolism," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34671-1
    DOI: 10.1038/s41467-022-34671-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34671-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34671-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Changtao Jiang & Cen Xie & Ying Lv & Jing Li & Kristopher W. Krausz & Jingmin Shi & Chad N. Brocker & Dhimant Desai & Shantu G. Amin & William H. Bisson & Yulan Liu & Oksana Gavrilova & Andrew D. Patt, 2015. "Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction," Nature Communications, Nature, vol. 6(1), pages 1-18, December.
    2. Nan Qin & Fengling Yang & Ang Li & Edi Prifti & Yanfei Chen & Li Shao & Jing Guo & Emmanuelle Le Chatelier & Jian Yao & Lingjiao Wu & Jiawei Zhou & Shujun Ni & Lin Liu & Nicolas Pons & Jean Michel Bat, 2014. "Alterations of the human gut microbiome in liver cirrhosis," Nature, Nature, vol. 513(7516), pages 59-64, September.
    3. Man Pan & Qingyun Zheng & Yuanyuan Yu & Huasong Ai & Yuan Xie & Xin Zeng & Chu Wang & Lei Liu & Minglei Zhao, 2021. "Seesaw conformations of Npl4 in the human p97 complex and the inhibitory mechanism of a disulfiram derivative," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Zdenek Skrott & Martin Mistrik & Klaus Kaae Andersen & Søren Friis & Dusana Majera & Jan Gursky & Tomas Ozdian & Jirina Bartkova & Zsofia Turi & Pavel Moudry & Marianne Kraus & Martina Michalova & Jan, 2017. "Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4," Nature, Nature, vol. 552(7684), pages 194-199, December.
    5. Yuya Terashima & Etsuko Toda & Meiji Itakura & Mikiya Otsuji & Sosuke Yoshinaga & Kazuhiro Okumura & Francis H. W. Shand & Yoshihiro Komohara & Mitsuhiro Takeda & Kana Kokubo & Ming-Chen Chen & Sana Y, 2020. "Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    6. Fengjie Huang & Xiaojiao Zheng & Xiaohui Ma & Runqiu Jiang & Wangyi Zhou & Shuiping Zhou & Yunjing Zhang & Sha Lei & Shouli Wang & Junliang Kuang & Xiaolong Han & Meilin Wei & Yijun You & Mengci Li & , 2019. "Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashwag Shami & Rewaa S. Jalal & Ruba A. Ashy & Haneen W. Abuauf & Lina Baz & Mohammed Y. Refai & Aminah A. Barqawi & Hanadi M. Baeissa & Manal A. Tashkandi & Sahar Alshareef & Aala A. Abulfaraj, 2022. "Use of Metagenomic Whole Genome Shotgun Sequencing Data in Taxonomic Assignment of Dipterygium glaucum Rhizosphere and Surrounding Bulk Soil Microbiomes, and Their Response to Watering," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    2. Qi Zhao & Man-Yun Dai & Ruo-Yue Huang & Jing-Yi Duan & Ting Zhang & Wei-Min Bao & Jing-Yi Zhang & Shao-Qiang Gui & Shu-Min Xia & Cong-Ting Dai & Ying-Mei Tang & Frank J. Gonzalez & Fei Li, 2023. "Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Runtan Cheng & Lu Wang & Shenglong Le & Yifan Yang & Can Zhao & Xiangqi Zhang & Xin Yang & Ting Xu & Leiting Xu & Petri Wiklund & Jun Ge & Dajiang Lu & Chenhong Zhang & Luonan Chen & Sulin Cheng, 2022. "A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Yu-Feng Wei & Ming-Shyan Huang & Cheng-Hsieh Huang & Yao-Tsung Yeh & Chih-Hsin Hung, 2022. "Impact of Gut Dysbiosis on the Risk of Non-Small-Cell Lung Cancer," IJERPH, MDPI, vol. 19(23), pages 1-17, November.
    5. Juan Pang & Fitore Raka & Alya Abbas Heirali & Weijuan Shao & Dinghui Liu & Jianqiu Gu & Jia Nuo Feng & Chieko Mineo & Philip W. Shaul & Xiaoxian Qian & Bryan Coburn & Khosrow Adeli & Wenhua Ling & Ti, 2023. "Resveratrol intervention attenuates chylomicron secretion via repressing intestinal FXR-induced expression of scavenger receptor SR-B1," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Mengci Li & Shouli Wang & Yitao Li & Mingliang Zhao & Junliang Kuang & Dandan Liang & Jieyi Wang & Meilin Wei & Cynthia Rajani & Xinran Ma & Yajun Tang & Zhenxing Ren & Tianlu Chen & Aihua Zhao & Chen, 2022. "Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Jennifer T. Wolstenholme & Justin M. Saunders & Maren Smith & Jason D. Kang & Phillip B. Hylemon & Javier González-Maeso & Andrew Fagan & Derrick Zhao & Masoumeh Sikaroodi & Jeremy Herzog & Amirhossei, 2022. "Reduced alcohol preference and intake after fecal transplant in patients with alcohol use disorder is transmissible to germ-free mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Mohammed Y. Refai & Aala A. Abulfaraj & Israa J. Hakeem & Nehad A. Shaer & Mashael D. Alqahtani & Maryam M. Alomran & Nahaa M. Alotaibi & Hana S. Sonbol & Abdulrahman M. Alhashimi & Nouf S. Al-Abbas &, 2023. "Rhizobiome Signature and Its Alteration Due to Watering in the Wild Plant Moringa oleifera," Sustainability, MDPI, vol. 15(3), pages 1-25, February.
    9. Lulu Sun & Yi Zhang & Jie Cai & Bipin Rimal & Edson R. Rocha & James P. Coleman & Chenran Zhang & Robert G. Nichols & Yuhong Luo & Bora Kim & Yaozong Chen & Kristopher W. Krausz & Curtis C. Harris & A, 2023. "Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Qi Su & Qin Liu & Raphaela Iris Lau & Jingwan Zhang & Zhilu Xu & Yun Kit Yeoh & Thomas W. H. Leung & Whitney Tang & Lin Zhang & Jessie Q. Y. Liang & Yuk Kam Yau & Jiaying Zheng & Chengyu Liu & Mengjin, 2022. "Faecal microbiome-based machine learning for multi-class disease diagnosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Efrat Muller & Itamar Shiryan & Elhanan Borenstein, 2024. "Multi-omic integration of microbiome data for identifying disease-associated modules," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Wanting Dong & Xinyue Fan & Yaqiong Guo & Siyi Wang & Shulei Jia & Na Lv & Tao Yuan & Yuanlong Pan & Yong Xue & Xi Chen & Qian Xiong & Ruifu Yang & Weigang Zhao & Baoli Zhu, 2024. "An expanded database and analytical toolkit for identifying bacterial virulence factors and their associations with chronic diseases," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34671-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.