IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34428-w.html
   My bibliography  Save this article

Tumor factors stimulate lysosomal degradation of tumor antigens and undermine their cross-presentation in lung cancer

Author

Listed:
  • Zhen Lu

    (University of Pennsylvania)

  • Jinyun Chen

    (University of Pennsylvania)

  • Pengfei Yu

    (University of Pennsylvania)

  • Matthew J. Atherton

    (University of Pennsylvania)

  • Jun Gui

    (University of Pennsylvania)

  • Vivek S. Tomar

    (University of Pennsylvania)

  • Justin D. Middleton

    (The Ohio State University)

  • Neil T. Sullivan

    (University of Pennsylvania)

  • Sunil Singhal

    (University of Pennsylvania)

  • Subin S. George

    (University of Pennsylvania)

  • Ashley G. Woolfork

    (University of Pennsylvania)

  • Aalim M. Weljie

    (University of Pennsylvania)

  • Tsonwin Hai

    (The Ohio State University)

  • Evgeniy B. Eruslanov

    (University of Pennsylvania)

  • Serge Y. Fuchs

    (University of Pennsylvania)

Abstract

Activities of dendritic cells (DCs) that present tumor antigens are often suppressed in tumors. Here we report that this suppression is induced by tumor microenvironment-derived factors, which activate the activating transcription factor-3 (ATF3) transcription factor and downregulate cholesterol 25-hydroxylase (CH25H). Loss of CH25H in antigen presenting cells isolated from human lung tumors is associated with tumor growth and lung cancer progression. Accordingly, mice lacking CH25H in DCs exhibit an accelerated tumor growth, decreased infiltration and impaired activation of intratumoral CD8+ T cells. These mice do not establish measurable long-term immunity against malignant cells that undergo chemotherapy-induced immunogenic cell death. Mechanistically, downregulation of CH25H stimulates membrane fusion between endo-phagosomes and lysosomes, accelerates lysosomal degradation and restricts cross-presentation of tumor antigens in the intratumoral DCs. Administration of STING agonist MSA-2 reduces the lysosomal activity in DCs, restores antigen cross presentation, and increases therapeutic efficacy of PD-1 blockade against tumour challenge in a CH25H-dependent manner. These studies highlight the importance of downregulation of CH25H in DCs for tumor immune evasion and resistance to therapy.

Suggested Citation

  • Zhen Lu & Jinyun Chen & Pengfei Yu & Matthew J. Atherton & Jun Gui & Vivek S. Tomar & Justin D. Middleton & Neil T. Sullivan & Sunil Singhal & Subin S. George & Ashley G. Woolfork & Aalim M. Weljie & , 2022. "Tumor factors stimulate lysosomal degradation of tumor antigens and undermine their cross-presentation in lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34428-w
    DOI: 10.1038/s41467-022-34428-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34428-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34428-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keisuke Yamamoto & Anthony Venida & Julian Yano & Douglas E. Biancur & Miwako Kakiuchi & Suprit Gupta & Albert S. W. Sohn & Subhadip Mukhopadhyay & Elaine Y. Lin & Seth J. Parker & Robert S. Banh & Jo, 2020. "Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I," Nature, Nature, vol. 581(7806), pages 100-105, May.
    2. Balázs Győrffy & Pawel Surowiak & Jan Budczies & András Lánczky, 2013. "Online Survival Analysis Software to Assess the Prognostic Value of Biomarkers Using Transcriptomic Data in Non-Small-Cell Lung Cancer," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    3. Stefani Spranger & Riyue Bao & Thomas F. Gajewski, 2015. "Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity," Nature, Nature, vol. 523(7559), pages 231-235, July.
    4. Xinjian Liu & Xuhui Bao & Mengjie Hu & Hanman Chang & Meng Jiao & Jin Cheng & Liyi Xie & Qian Huang & Fang Li & Chuan-Yuan Li, 2020. "Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer," Nature, Nature, vol. 588(7839), pages 693-698, December.
    5. Mahesh Yadav & Suchit Jhunjhunwala & Qui T. Phung & Patrick Lupardus & Joshua Tanguay & Stephanie Bumbaca & Christian Franci & Tommy K. Cheung & Jens Fritsche & Toni Weinschenk & Zora Modrusan & Ira M, 2014. "Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing," Nature, Nature, vol. 515(7528), pages 572-576, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanzun Lin & Li Chen & Haojiong Zhang & Xianxin Qiu & Qingting Huang & Fangzhu Wan & Ziyu Le & Shikai Geng & Anlan Zhang & Sufang Qiu & Long Chen & Lin Kong & Jiade J. Lu, 2023. "Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Lianmei Tan & Tao Yin & Handan Xiang & Liuyang Wang & Poorva Mudgal & Junying Chen & Yi Ding & Guoping Wang & Bryan Jian Wei Lim & Yuqi Huang & De Huang & Yaosi Liang & Peter B. Alexander & Kun Xiang , 2024. "Aberrant cytoplasmic expression of UHRF1 restrains the MHC-I-mediated anti-tumor immune response," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Mehwish Iftikhar & Muhammad Imran Qureshi & Shazia Qayyum & Iram Fatima & Sriyanto Sriyanto & Yasinta Indrianti & Aqeel Khan & Leo-Paul Dana, 2021. "Impact of Multifaceted Workplace Bullying on the Relationships between Technology Usage, Organisational Climate and Employee Physical and Emotional Health," IJERPH, MDPI, vol. 18(6), pages 1-19, March.
    4. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Chi Chun Wong & Jian-Lin Wu & Fenfen Ji & Wei Kang & Xiqing Bian & Huarong Chen & Lam-Shing Chan & Simson Tsz Yat Luk & Samuel Tong & Jiaying Xu & Qiming Zhou & Dabin Liu & Hao Su & Hongyan Gou & Alvi, 2022. "The cholesterol uptake regulator PCSK9 promotes and is a therapeutic target in APC/KRAS-mutant colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Zi-Yi Han & Zhuang-Jiong Fu & Yu-Zhang Wang & Cheng Zhang & Qi-Wen Chen & Jia-Xin An & Xian-Zheng Zhang, 2024. "Probiotics functionalized with a gallium-polyphenol network modulate the intratumor microbiota and promote anti-tumor immune responses in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Nina Frey & Luigi Tortola & David Egli & Sharan Janjuha & Tanja Rothgangl & Kim Fabiano Marquart & Franziska Ampenberger & Manfred Kopf & Gerald Schwank, 2022. "Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Xiaoyu Liu & Yaping Zhuang & Wei Huang & Zhuozhuo Wu & Yingjie Chen & Qungang Shan & Yuefang Zhang & Zhiyuan Wu & Xiaoyi Ding & Zilong Qiu & Wenguo Cui & Zhongmin Wang, 2023. "Interventional hydrogel microsphere vaccine as an immune amplifier for activated antitumour immunity after ablation therapy," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Jiang-jiang Li & Tiantian Yu & Peiting Zeng & Jingyu Tian & Panpan Liu & Shuang Qiao & Shijun Wen & Yumin Hu & Qiao Liu & Wenhua Lu & Hui Zhang & Peng Huang, 2024. "Wild-type IDH2 is a therapeutic target for triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Lucia Taraborrelli & Yasin Şenbabaoğlu & Lifen Wang & Junghyun Lim & Kerrigan Blake & Noelyn Kljavin & Sarah Gierke & Alexis Scherl & James Ziai & Erin McNamara & Mark Owyong & Shilpa Rao & Aslihan Ka, 2023. "Tumor-intrinsic expression of the autophagy gene Atg16l1 suppresses anti-tumor immunity in colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Judit Svensson-Arvelund & Sara Cuadrado-Castano & Gvantsa Pantsulaia & Kristy Kim & Mark Aleynick & Linda Hammerich & Ranjan Upadhyay & Michael Yellin & Henry Marsh & Daniel Oreper & Suchit Jhunjhunwa, 2022. "Expanding cross-presenting dendritic cells enhances oncolytic virotherapy and is critical for long-term anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Ming Yi & Ruoqing Zhu & Robert M Stephens, 2018. "GradientScanSurv—An exhaustive association test method for gene expression data with censored survival outcome," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-28, December.
    13. Paul A Stewart & Katja Parapatics & Eric A Welsh & André C Müller & Haoyun Cao & Bin Fang & John M Koomen & Steven A Eschrich & Keiryn L Bennett & Eric B Haura, 2015. "A Pilot Proteogenomic Study with Data Integration Identifies MCT1 and GLUT1 as Prognostic Markers in Lung Adenocarcinoma," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-18, November.
    14. Wenfeng Ren & Zilong Xu & Yating Chang & Fei Ju & Hongning Wu & Zhiqi Liang & Min Zhao & Naizhen Wang & Yanhua Lin & Chenhang Xu & Shengming Chen & Yipeng Rao & Chaolong Lin & Jianxin Yang & Pingguo L, 2024. "Pharmaceutical targeting of OTUB2 sensitizes tumors to cytotoxic T cells via degradation of PD-L1," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Jennifer G. Abelin & Erik J. Bergstrom & Keith D. Rivera & Hannah B. Taylor & Susan Klaeger & Charles Xu & Eva K. Verzani & C. Jackson White & Hilina B. Woldemichael & Maya Virshup & Meagan E. Olive &, 2023. "Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    16. Bo Yuan & Jingyuan Xiong & Chaoxiong Zhang & Yuqin Yao & Chaoxiong Zhang & Ting An & Jie Liu, 2020. "Prognostic Roles of APLNR Expression in Non-Small Cell Lung Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 27(5), pages 21089-21098, May.
    17. Jens Bauer & Natalie Köhler & Yacine Maringer & Philip Bucher & Tatjana Bilich & Melissa Zwick & Severin Dicks & Annika Nelde & Marissa Dubbelaar & Jonas Scheid & Marcel Wacker & Jonas S. Heitmann & S, 2022. "The oncogenic fusion protein DNAJB1-PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Naomi Hoenisch Gravel & Annika Nelde & Jens Bauer & Lena Mühlenbruch & Sarah M. Schroeder & Marian C. Neidert & Jonas Scheid & Steffen Lemke & Marissa L. Dubbelaar & Marcel Wacker & Anna Dengler & Rei, 2023. "TOFIMS mass spectrometry-based immunopeptidomics refines tumor antigen identification," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Yongyao Fu & Abigail Pajulas & Jocelyn Wang & Baohua Zhou & Anthony Cannon & Cherry Cheuk Lam Cheung & Jilu Zhang & Huaxin Zhou & Amanda Jo Fisher & David T. Omstead & Sabrina Khan & Lei Han & Jean-Ch, 2022. "Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Junmeng Zhu & Yaohua Ke & Qin Liu & Ju Yang & Fangcen Liu & Ruihan Xu & Hang Zhou & Aoxing Chen & Jie Xiao & Fanyan Meng & Lixia Yu & Rutian Li & Jia Wei & Baorui Liu, 2022. "Engineered Lactococcus lactis secreting Flt3L and OX40 ligand for in situ vaccination-based cancer immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34428-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.