IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35130-7.html
   My bibliography  Save this article

Engineered Lactococcus lactis secreting Flt3L and OX40 ligand for in situ vaccination-based cancer immunotherapy

Author

Listed:
  • Junmeng Zhu

    (The Affiliated Hospital of Nanjing University Medical School)

  • Yaohua Ke

    (The Affiliated Hospital of Nanjing University Medical School)

  • Qin Liu

    (The Affiliated Hospital of Nanjing University Medical School)

  • Ju Yang

    (The Affiliated Hospital of Nanjing University Medical School)

  • Fangcen Liu

    (The Affiliated Hospital of Nanjing University Medical School)

  • Ruihan Xu

    (The Affiliated Hospital of Nanjing University Medical School)

  • Hang Zhou

    (The Affiliated Hospital of Nanjing University Medical School)

  • Aoxing Chen

    (The Affiliated Hospital of Nanjing University Medical School)

  • Jie Xiao

    (The Affiliated Hospital of Nanjing University Medical School)

  • Fanyan Meng

    (The Affiliated Hospital of Nanjing University Medical School)

  • Lixia Yu

    (The Affiliated Hospital of Nanjing University Medical School)

  • Rutian Li

    (The Affiliated Hospital of Nanjing University Medical School)

  • Jia Wei

    (The Affiliated Hospital of Nanjing University Medical School)

  • Baorui Liu

    (The Affiliated Hospital of Nanjing University Medical School)

Abstract

In situ vaccination is a promising strategy to convert the immunosuppressive tumor microenvironment into an immunostimulatory one with limited systemic exposure and side effect. However, sustained clinical benefits require long-term and multidimensional immune activation including innate and adaptive immunity. Here, we develop a probiotic food-grade Lactococcus lactis-based in situ vaccination (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and co-stimulator OX40 ligand. Intratumoural delivery of FOLactis contributes to local retention and sustained release of therapeutics to thoroughly modulate key components of the antitumour immune response, such as activation of natural killer cells, cytotoxic T lymphocytes, and conventional-type-1-dendritic cells in the tumors and tumor-draining lymph nodes. In addition, intratumoural administration of FOLactis induces a more robust tumor antigen-specific immune response and superior systemic antitumour efficacy in multiple poorly immune cell-infiltrated and anti-PD1-resistant tumors. Specific depletion of different immune cells reveals that CD8+ T and natural killer cells are crucial to the in situ vaccine-elicited tumor regression. Our results confirm that FOLactis displays an enhanced antitumour immunity and successfully converts the ‘cold’ tumors to ‘hot’ tumors.

Suggested Citation

  • Junmeng Zhu & Yaohua Ke & Qin Liu & Ju Yang & Fangcen Liu & Ruihan Xu & Hang Zhou & Aoxing Chen & Jie Xiao & Fanyan Meng & Lixia Yu & Rutian Li & Jia Wei & Baorui Liu, 2022. "Engineered Lactococcus lactis secreting Flt3L and OX40 ligand for in situ vaccination-based cancer immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35130-7
    DOI: 10.1038/s41467-022-35130-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35130-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35130-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takaaki Oba & Mark D. Long & Tibor Keler & Henry C. Marsh & Hans Minderman & Scott I. Abrams & Song Liu & Fumito Ito, 2020. "Overcoming primary and acquired resistance to anti-PD-L1 therapy by induction and activation of tumor-residing cDC1s," Nature Communications, Nature, vol. 11(1), pages 1-20, December.
    2. Stefani Spranger & Riyue Bao & Thomas F. Gajewski, 2015. "Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity," Nature, Nature, vol. 523(7559), pages 231-235, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Lucía López & Luciano Gastón Morosi & Federica Terza & Pierre Bourdely & Giuseppe Rospo & Roberto Amadio & Giulia Maria Piperno & Valentina Russo & Camilla Volponi & Simone Vodret & Sonal Joshi & Fran, 2024. "Dendritic cell-targeted therapy expands CD8 T cell responses to bona-fide neoantigens in lung tumors," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Su Yin Lim & Elena Shklovskaya & Jenny H. Lee & Bernadette Pedersen & Ashleigh Stewart & Zizhen Ming & Mal Irvine & Brindha Shivalingam & Robyn P. M. Saw & Alexander M. Menzies & Matteo S. Carlino & R, 2023. "The molecular and functional landscape of resistance to immune checkpoint blockade in melanoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Andrew Patterson & Noam Auslander, 2022. "Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Zhen Lu & Jinyun Chen & Pengfei Yu & Matthew J. Atherton & Jun Gui & Vivek S. Tomar & Justin D. Middleton & Neil T. Sullivan & Sunil Singhal & Subin S. George & Ashley G. Woolfork & Aalim M. Weljie & , 2022. "Tumor factors stimulate lysosomal degradation of tumor antigens and undermine their cross-presentation in lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Jodi M. Carter & Saranya Chumsri & Douglas A. Hinerfeld & Yaohua Ma & Xue Wang & David Zahrieh & David W. Hillman & Kathleen S. Tenner & Jennifer M. Kachergus & Heather Ann Brauer & Sarah E. Warren & , 2023. "Distinct spatial immune microlandscapes are independently associated with outcomes in triple-negative breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Shravan Leonard-Murali & Chetana Bhaskarla & Ghanshyam S. Yadav & Sudeep K. Maurya & Chenna R. Galiveti & Joshua A. Tobin & Rachel J. Kann & Eishan Ashwat & Patrick S. Murphy & Anish B. Chakka & Visha, 2024. "Uveal melanoma immunogenomics predict immunotherapy resistance and susceptibility," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Yafei Jiang & Jinzeng Wang & Mengxiong Sun & Dongqing Zuo & Hongsheng Wang & Jiakang Shen & Wenyan Jiang & Haoran Mu & Xiaojun Ma & Fei Yin & Jun Lin & Chongren Wang & Shuting Yu & Lu Jiang & Gang Lv , 2022. "Multi-omics analysis identifies osteosarcoma subtypes with distinct prognosis indicating stratified treatment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Yunxing Shi & Zongfeng Wu & Shaoru Liu & Dinglan Zuo & Yi Niu & Yuxiong Qiu & Liang Qiao & Wei He & Jiliang Qiu & Yunfei Yuan & Guocan Wang & Binkui Li, 2024. "Targeting PRMT3 impairs methylation and oligomerization of HSP60 to boost anti-tumor immunity by activating cGAS/STING signaling," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35130-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.