IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34423-1.html
   My bibliography  Save this article

Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface

Author

Listed:
  • Jie Ye

    (Fujian Agriculture and Forestry University)

  • Chao Wang

    (Fujian Agriculture and Forestry University)

  • Chao Gao

    (University of Science and Technology of China)

  • Tao Fu

    (Fujian Agriculture and Forestry University)

  • Chaohui Yang

    (Fujian Agriculture and Forestry University)

  • Guoping Ren

    (Fujian Agriculture and Forestry University)

  • Jian Lü

    (Fujian Agriculture and Forestry University)

  • Shungui Zhou

    (Fujian Agriculture and Forestry University)

  • Yujie Xiong

    (University of Science and Technology of China)

Abstract

Integration of methanogens with semiconductors is an effective approach to sustainable solar-driven methanogenesis. However, the H2 production rate by semiconductors largely exceeds that of methanogen metabolism, resulting in abundant H2 as side product. Here, we report that binary metallic active sites (namely, NiCu alloys) are incorporated into the interface between CdS semiconductors and Methanosarcina barkeri. The self-assembled Methanosarcina barkeri-NiCu@CdS exhibits nearly 100% CH4 selectivity with a quantum yield of 12.41 ± 0.16% under light illumination, which not only exceeds the reported biotic-abiotic hybrid systems but also is superior to most photocatalytic systems. Further investigation reveal that the Ni-Cu-Cu hollow sites in NiCu alloys can directly supply hydrogen atoms and electrons through photocatalysis to the Methanosarcina barkeri for methanogenesis via both extracellular and intracellular hydrogen cycles, effectively turning down the H2 production. This work provides important insights into the biotic-abiotic hybrid interface, and offers an avenue for engineering the methanogenesis process.

Suggested Citation

  • Jie Ye & Chao Wang & Chao Gao & Tao Fu & Chaohui Yang & Guoping Ren & Jian Lü & Shungui Zhou & Yujie Xiong, 2022. "Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34423-1
    DOI: 10.1038/s41467-022-34423-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34423-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34423-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    2. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    3. Yong Cui & Yuming Wang & Jonas Bergqvist & Huifeng Yao & Ye Xu & Bowei Gao & Chenyi Yang & Shaoqing Zhang & Olle Inganäs & Feng Gao & Jianhui Hou, 2019. "Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications," Nature Energy, Nature, vol. 4(9), pages 768-775, September.
    4. Dong Wang & Xue-Qing Gong, 2021. "Function-oriented design of robust metal cocatalyst for photocatalytic hydrogen evolution on metal/titania composites," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    5. David W. Wakerley & Moritz F. Kuehnel & Katherine L. Orchard & Khoa H. Ly & Timothy E. Rosser & Erwin Reisner, 2017. "Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst," Nature Energy, Nature, vol. 2(4), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Xuwei & Wu, Yan & Li, Tingzhen & Lan, Guoxin & Shen, Jia & Yu, Yue & Xue, Ping & Chen, Dan & Wang, Maoqing & Fu, Chuan, 2023. "A study of co-pyrolysis of sewage sludge and rice husk for syngas production based on a cyclic catalytic integrated process system," Renewable Energy, Elsevier, vol. 215(C).
    2. Sheng-Lan Gong & YangChao Tian & Guo-Ping Sheng & Li-Jiao Tian, 2024. "Dual-mode harvest solar energy for photothermal Cu2-xSe biomineralization and seawater desalination by biotic-abiotic hybrid," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).
    4. Jie Ye & Minghan Zhuang & Mingqiu Hong & Dong Zhang & Guoping Ren & Andong Hu & Chaohui Yang & Zhen He & Shungui Zhou, 2024. "Methanogenesis in the presence of oxygenic photosynthetic bacteria may contribute to global methane cycle," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Guangyu Liu & Yuan Zhong & Zehua Liu & Gang Wang & Feng Gao & Chao Zhang & Yujie Wang & Hongwei Zhang & Jun Ma & Yangguang Hu & Aobo Chen & Jiangyuan Pan & Yuanzeng Min & Zhiyong Tang & Chao Gao & Yuj, 2024. "Solar-driven sugar production directly from CO2 via a customizable electrocatalytic–biocatalytic flow system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    2. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    3. Victor Soto & Claudia Ulloa & Ximena Garcia, 2021. "A CFD Design Approach for Industrial Size Tubular Reactors for SNG Production from Biogas (CO 2 Methanation)," Energies, MDPI, vol. 14(19), pages 1-25, September.
    4. Michael Carus & Lara Dammer & Achim Raschka & Pia Skoczinski, 2020. "Renewable carbon: Key to a sustainable and future‐oriented chemical and plastic industry: Definition, strategy, measures and potential," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 488-505, June.
    5. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    6. Joey Disch & Luca Bohn & Susanne Koch & Michael Schulz & Yiyong Han & Alessandro Tengattini & Lukas Helfen & Matthias Breitwieser & Severin Vierrath, 2022. "High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Moreaux, Michel & Amigues, Jean-Pierre & van der Meijden, Gerard & Withagen, Cees, 2024. "Carbon capture: Storage vs. Utilization," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    8. Tihamér Tibor Sebestyén, 2024. "Evaluation of the Carbon Footprint of Wooden Glamping Structures by Life Cycle Assessment," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    9. Moioli, Emanuele & Mutschler, Robin & Züttel, Andreas, 2019. "Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 497-506.
    10. Tuğçe Beyazay & Kendra S. Belthle & Christophe Farès & Martina Preiner & Joseph Moran & William F. Martin & Harun Tüysüz, 2023. "Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    12. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    13. Sayed Ebrahim Hashemi & Kristian M. Lien & Magne Hillestad & Sondre K. Schnell & Bjørn Austbø, 2021. "Thermodynamic Insight in Design of Methanation Reactor with Water Removal Considering Nexus between CO 2 Conversion and Irreversibilities," Energies, MDPI, vol. 14(23), pages 1-21, November.
    14. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    15. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.
    16. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    17. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    19. Cameron Hepburn & Brian O’Callaghan & Nicholas Stern & Joseph Stiglitz & Dimitri Zenghelis, 2020. "Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 359-381.
    20. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34423-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.