IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50108-3.html
   My bibliography  Save this article

Methanogenesis in the presence of oxygenic photosynthetic bacteria may contribute to global methane cycle

Author

Listed:
  • Jie Ye

    (College of Resources and Environment, Fujian Agriculture and Forestry University)

  • Minghan Zhuang

    (College of Resources and Environment, Fujian Agriculture and Forestry University)

  • Mingqiu Hong

    (College of Resources and Environment, Fujian Agriculture and Forestry University)

  • Dong Zhang

    (College of Resources and Environment, Fujian Agriculture and Forestry University)

  • Guoping Ren

    (College of Resources and Environment, Fujian Agriculture and Forestry University)

  • Andong Hu

    (College of Resources and Environment, Fujian Agriculture and Forestry University)

  • Chaohui Yang

    (College of Resources and Environment, Fujian Agriculture and Forestry University)

  • Zhen He

    (Washington University in St. Louis)

  • Shungui Zhou

    (College of Resources and Environment, Fujian Agriculture and Forestry University)

Abstract

Accumulating evidences are challenging the paradigm that methane in surface water primarily stems from the anaerobic transformation of organic matters. Yet, the contribution of oxygenic photosynthetic bacteria, a dominant species in surface water, to methane production remains unclear. Here we show methanogenesis triggered by the interaction between oxygenic photosynthetic bacteria and anaerobic methanogenic archaea. By introducing cyanobacterium Synechocystis PCC6803 and methanogenic archaea Methanosarcina barkeri with the redox cycling of iron, CH4 production was induced in coculture biofilms through both syntrophic methanogenesis (under anoxic conditions in darkness) and abiotic methanogenesis (under oxic conditions in illumination) during the periodic dark-light cycles. We have further demonstrated CH4 production by other model oxygenic photosynthetic bacteria from various phyla, in conjunction with different anaerobic methanogenic archaea exhibiting diverse energy conservation modes, as well as various common Fe-species. These findings have revealed an unexpected link between oxygenic photosynthesis and methanogenesis and would advance our understanding of photosynthetic bacteria’s ecological role in the global CH4 cycle. Such light-driven methanogenesis may be widely present in nature.

Suggested Citation

  • Jie Ye & Minghan Zhuang & Mingqiu Hong & Dong Zhang & Guoping Ren & Andong Hu & Chaohui Yang & Zhen He & Shungui Zhou, 2024. "Methanogenesis in the presence of oxygenic photosynthetic bacteria may contribute to global methane cycle," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50108-3
    DOI: 10.1038/s41467-024-50108-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50108-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50108-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anindita Bandyopadhyay & Jana Stöckel & Hongtao Min & Louis A. Sherman & Himadri B. Pakrasi, 2010. "High rates of photobiological H2 production by a cyanobacterium under aerobic conditions," Nature Communications, Nature, vol. 1(1), pages 1-7, December.
    2. Elisabet Perez-Coronel & J. Michael Beman, 2022. "Multiple sources of aerobic methane production in aquatic ecosystems include bacterial photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Gadiel Saper & Dan Kallmann & Felipe Conzuelo & Fangyuan Zhao & Tünde N. Tóth & Varda Liveanu & Sagit Meir & Jedrzej Szymanski & Asaph Aharoni & Wolfgang Schuhmann & Avner Rothschild & Gadi Schuster &, 2018. "Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Gerard Rocher-Ros & Emily H. Stanley & Luke C. Loken & Nora J. Casson & Peter A. Raymond & Shaoda Liu & Giuseppe Amatulli & Ryan A. Sponseller, 2023. "Global methane emissions from rivers and streams," Nature, Nature, vol. 621(7979), pages 530-535, September.
    5. Frederik Althoff & Kathrin Benzing & Peter Comba & Colin McRoberts & Derek R. Boyd & Steffen Greiner & Frank Keppler, 2014. "Abiotic methanogenesis from organosulphur compounds under ambient conditions," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    6. Jie Ye & Chao Wang & Chao Gao & Tao Fu & Chaohui Yang & Guoping Ren & Jian Lü & Shungui Zhou & Yujie Xiong, 2022. "Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Leonard Ernst & Uladzimir Barayeu & Jonas Hädeler & Tobias P. Dick & Judith M. Klatt & Frank Keppler & Johannes G. Rebelein, 2023. "Methane formation driven by light and heat prior to the origin of life and beyond," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Jae-Hoon & Kabra, Akhil N. & Kim, Jung Rae & Jeon, Byong-Hun, 2014. "Photoheterotrophic microalgal hydrogen production using acetate- and butyrate-rich wastewater effluent," Energy, Elsevier, vol. 78(C), pages 887-894.
    2. Shoko Kusama & Seiji Kojima & Ken Kimura & Ginga Shimakawa & Chikahiro Miyake & Kenya Tanaka & Yasuaki Okumura & Shuji Nakanishi, 2022. "Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Leonard Ernst & Uladzimir Barayeu & Jonas Hädeler & Tobias P. Dick & Judith M. Klatt & Frank Keppler & Johannes G. Rebelein, 2023. "Methane formation driven by light and heat prior to the origin of life and beyond," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Kumar, A. Naresh & Dissanayake, Pavani Dulanja & Masek, Ondrej & Priya, Anshu & Ki Lin, Carol Sze & Ok, Yong Sik & Kim, Sang-Hyoun, 2021. "Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Guangyu Liu & Yuan Zhong & Zehua Liu & Gang Wang & Feng Gao & Chao Zhang & Yujie Wang & Hongwei Zhang & Jun Ma & Yangguang Hu & Aobo Chen & Jiangyuan Pan & Yuanzeng Min & Zhiyong Tang & Chao Gao & Yuj, 2024. "Solar-driven sugar production directly from CO2 via a customizable electrocatalytic–biocatalytic flow system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Sheng-Lan Gong & YangChao Tian & Guo-Ping Sheng & Li-Jiao Tian, 2024. "Dual-mode harvest solar energy for photothermal Cu2-xSe biomineralization and seawater desalination by biotic-abiotic hybrid," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Jan N. Arx & Abiel T. Kidane & Miriam Philippi & Wiebke Mohr & Gaute Lavik & Sina Schorn & Marcel M. M. Kuypers & Jana Milucka, 2023. "Methylphosphonate-driven methane formation and its link to primary production in the oligotrophic North Atlantic," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Pan, Xuwei & Wu, Yan & Li, Tingzhen & Lan, Guoxin & Shen, Jia & Yu, Yue & Xue, Ping & Chen, Dan & Wang, Maoqing & Fu, Chuan, 2023. "A study of co-pyrolysis of sewage sludge and rice husk for syngas production based on a cyclic catalytic integrated process system," Renewable Energy, Elsevier, vol. 215(C).
    9. Sadvakasova, Asemgul K. & Kossalbayev, Bekzhan D. & Zayadan, Bolatkhan K. & Bolatkhan, Kenzhegul & Alwasel, Saleh & Najafpour, Mohammad Mahdi & Tomo, Tatsuya & Allakhverdiev, Suleyman I., 2020. "Bioprocesses of hydrogen production by cyanobacteria cells and possible ways to increase their productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    11. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).
    12. Anindita Bandyopadhyay & Annesha Sengupta & Thanura Elvitigala & Himadri B. Pakrasi, 2024. "Endogenous clock-mediated regulation of intracellular oxygen dynamics is essential for diazotrophic growth of unicellular cyanobacteria," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50108-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.