IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7256.html
   My bibliography  Save this article

Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins

Author

Listed:
  • Fuun Kawano

    (Graduate School of Arts and Sciences, The University of Tokyo)

  • Hideyuki Suzuki

    (Graduate School of Arts and Sciences, The University of Tokyo)

  • Akihiro Furuya

    (Graduate School of Arts and Sciences, The University of Tokyo)

  • Moritoshi Sato

    (Graduate School of Arts and Sciences, The University of Tokyo)

Abstract

Optogenetic methods take advantage of photoswitches to control the activity of cellular proteins. Here, we completed a multi-directional engineering of the fungal photoreceptor Vivid to develop pairs of distinct photoswitches named Magnets. These new photoswitches were engineered to recognize each other based on the electrostatic interactions, thus preventing homodimerization and enhancing light-induced heterodimerization. Furthermore, we tuned the switch-off kinetics by four orders of magnitude and developed several variants, including those with substantially faster kinetics than any of the other conventional dimerization-based blue spectrum photoswitches. We demonstrate the utility of Magnets as powerful tools that can optogenetically manipulate molecular processes in biological systems.

Suggested Citation

  • Fuun Kawano & Hideyuki Suzuki & Akihiro Furuya & Moritoshi Sato, 2015. "Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7256
    DOI: 10.1038/ncomms7256
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7256
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dennis Vettkötter & Martin Schneider & Brady D. Goulden & Holger Dill & Jana Liewald & Sandra Zeiler & Julia Guldan & Yilmaz Arda Ateş & Shigeki Watanabe & Alexander Gottschalk, 2022. "Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Miguel Vizoso & Colin E. J. Pritchard & Lorenzo Bombardelli & Bram van den Broek & Paul Krimpenfort & Roderick L. Beijersbergen & Kees Jalink & Jacco van Rheenen, 2022. "A doxycycline- and light-inducible Cre recombinase mouse model for optogenetic genome editing," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Miaowei Mao & Yajie Qian & Wenyao Zhang & Siyu Zhou & Zefeng Wang & Xianjun Chen & Yi Yang, 2023. "Controlling protein stability with SULI, a highly sensitive tag for stabilization upon light induction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Jeonghye Yu & Jongpil Shin & Jihwan Yu & Jihye Kim & Daseuli Yu & Won Do Heo, 2024. "Programmable RNA base editing with photoactivatable CRISPR-Cas13," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Charlotte A. Cialek & Gabriel Galindo & Tatsuya Morisaki & Ning Zhao & Taiowa A. Montgomery & Timothy J. Stasevich, 2022. "Imaging translational control by Argonaute with single-molecule resolution in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.