IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33856-y.html
   My bibliography  Save this article

Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers

Author

Listed:
  • Yuzhu Ma

    (Fudan University)

  • Hongjin Zhang

    (Tianjin University)

  • Runfeng Lin

    (Fudan University)

  • Yan Ai

    (Fudan University)

  • Kun Lan

    (Fudan University)

  • Linlin Duan

    (Fudan University)

  • Wenyao Chen

    (East China University of Science and Technology)

  • Xuezhi Duan

    (East China University of Science and Technology)

  • Bing Ma

    (Fudan University)

  • Changyao Wang

    (Fudan University)

  • Xiaomin Li

    (Fudan University)

  • Dongyuan Zhao

    (Fudan University)

Abstract

Multi-chambered architectures have attracted much attention due to the ability to establish multifunctional partitions in different chambers, but manipulating the chamber numbers and coupling multi-functionality within the multi-chambered mesoporous nanoparticle remains a challenge. Herein, we propose a nanodroplet remodeling strategy for the synthesis of hierarchical multi-chambered mesoporous silica nanoparticles with tunable architectures. Typically, the dual-chambered nanoparticles with a high surface area of ~469 m2 g−1 present two interconnected cavities like a calabash. Furthermore, based on this nanodroplet remodeling strategy, multiple species (magnetic, catalytic, optic, etc.) can be separately anchored in different chamber without obvious mutual-crosstalk. We design a dual-chambered mesoporous nanoreactors with spatial isolation of Au and Pd active-sites for the cascade synthesis of 2-phenylindole from 1-nitro-2-(phenylethynyl)benzene. Due to the efficient mass transfer of reactants and intermediates in the dual-chambered structure, the selectivity of the target product reaches to ~76.5%, far exceeding that of single-chambered nanoreactors (~41.3%).

Suggested Citation

  • Yuzhu Ma & Hongjin Zhang & Runfeng Lin & Yan Ai & Kun Lan & Linlin Duan & Wenyao Chen & Xuezhi Duan & Bing Ma & Changyao Wang & Xiaomin Li & Dongyuan Zhao, 2022. "Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33856-y
    DOI: 10.1038/s41467-022-33856-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33856-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33856-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Houbing Zou & Jinyu Dai & Jinquan Suo & Rammile Ettelaie & Yuan Li & Nan Xue & Runwei Wang & Hengquan Yang, 2021. "Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Ryong Ryoo & Jaeheon Kim & Changbum Jo & Seung Won Han & Jeong-Chul Kim & Hongjun Park & Jongho Han & Hye Sun Shin & Jae Won Shin, 2020. "Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis," Nature, Nature, vol. 585(7824), pages 221-224, September.
    3. Tiancong Zhao & Liang Chen & Peiyuan Wang & Benhao Li & Runfeng Lin & Areej Abdulkareem Al-Khalaf & Wael N. Hozzein & Fan Zhang & Xiaomin Li & Dongyuan Zhao, 2019. "Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Fei Han & Ruoxu Wang & Yuhua Feng & Shaoyan Wang & Lingmei Liu & Xinghua Li & Yu Han & Hongyu Chen, 2019. "On demand synthesis of hollow fullerene nanostructures," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding Chen & Ruohan Yu & Kesong Yu & Ruihu Lu & Hongyu Zhao & Jixiang Jiao & Youtao Yao & Jiawei Zhu & Jinsong Wu & Shichun Mu, 2024. "Bicontinuous RuO2 nanoreactors for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Yu & Runfeng Lin & Hongyue Yu & Minchao Liu & Enyun Xing & Wenxing Wang & Fan Zhang & Dongyuan Zhao & Xiaomin Li, 2023. "Versatile synthesis of metal-compound based mesoporous Janus nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Cui, Zhengxing & Wang, Yeqing & Zhang, Peipei & Lu, Song & Chen, Yuxuan & Yu, Xiaotao & Guo, Min & Liu, Tiancun & Ying, Jiadi & Shen, Qi & Jin, Yinying & Yu, Zhixin, 2024. "Stable Cuδ+ species - Catalyzed CO₂ hydrogenation to methanol in silanol nests on Cu/S-1 catalyst," Applied Energy, Elsevier, vol. 365(C).
    3. Feilong Xing & Jiamin Ma & Ken-ichi Shimizu & Shinya Furukawa, 2022. "High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Shuang Liu & Yong Li & Xiaojuan Yu & Shaobo Han & Yan Zhou & Yuqi Yang & Hao Zhang & Zheng Jiang & Chuwei Zhu & Wei-Xue Li & Christof Wöll & Yuemin Wang & Wenjie Shen, 2022. "Tuning crystal-phase of bimetallic single-nanoparticle for catalytic hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Liang Peng & Huarong Peng & Steven Wang & Xingjin Li & Jiaying Mo & Xiong Wang & Yun Tang & Renchao Che & Zuankai Wang & Wei Li & Dongyuan Zhao, 2023. "One-dimensionally oriented self-assembly of ordered mesoporous nanofibers featuring tailorable mesophases via kinetic control," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Tianjiao Wang & Yu Xin & Bingfeng Chen & Bin Zhang & Sen Luan & Minghua Dong & Yuxuan Wu & Xiaomeng Cheng & Ye Liu & Huizhen Liu & Buxing Han, 2024. "Selective hydrodeoxygenation of α, β-unsaturated carbonyl compounds to alkenes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Jie Yao & Yingluo He & Yan Zeng & Xiaobo Feng & Jiaqi Fan & Shoya Komiyama & Xiaojing Yong & Wei Zhang & Tiejian Zhao & Zhongshan Guo & Xiaobo Peng & Guohui Yang & Noritatsu Tsubaki, 2022. "Ammonia pools in zeolites for direct fabrication of catalytic centers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Yong Yuan & Erwei Huang & Sooyeon Hwang & Ping Liu & Jingguang G. Chen, 2024. "Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Xiaofeng Gao & Ling Zhu & Feng Yang & Lei Zhang & Wenhao Xu & Xian Zhou & Yongkang Huang & Houhong Song & Lili Lin & Xiaodong Wen & Ding Ma & Siyu Yao, 2023. "Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Yifeng Liu & Zhiqiang Liu & Yu Hui & Liang Wang & Jian Zhang & Xianfeng Yi & Wei Chen & Chengtao Wang & Hai Wang & Yucai Qin & Lijuan Song & Anmin Zheng & Feng-Shou Xiao, 2023. "Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson’s catalyst for hydroformylation of olefins," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33856-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.