IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25226-x.html
   My bibliography  Save this article

Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation

Author

Listed:
  • Houbing Zou

    (Shanxi University)

  • Jinyu Dai

    (Jilin University)

  • Jinquan Suo

    (Jilin University)

  • Rammile Ettelaie

    (University of Leeds)

  • Yuan Li

    (Shanxi University)

  • Nan Xue

    (Shanxi University)

  • Runwei Wang

    (Jilin University)

  • Hengquan Yang

    (Shanxi University)

Abstract

Controlling localization of multiple metal nanoparticles on a single support is at the cutting edge of designing cascade catalysts, but is still a scientific and technological challenge because of the lack of nanostructured materials that can not only host metal nanoparticles in different sub-compartments but also enable efficient molecular transport between different metals. Herein we report a multicompartmentalized mesoporous organosilica with spatially separated sub-compartments that are connected by short nanochannels. Such a unique structure allows co-localization of Ru and Pd nanoparticles in a nanoscale proximal fashion. The so designed cascade catalyst exhibits an order of magnitude activity enhancement in the sequential hydrogenation of nitroarenes to cyclohexylamines compared with its mono/bi-metallic counterparts. Crucially, an interesting phenomenon of neighboring metal-assisted hydrogenation via hydrogen spillover is observed, contributing to the significant enhancement in catalytic efficiency. The multicompartmentalized architectures along with the revealed mechanism of accelerated hydrogenation provide vast opportunity for designing efficient cascade catalysts.

Suggested Citation

  • Houbing Zou & Jinyu Dai & Jinquan Suo & Rammile Ettelaie & Yuan Li & Nan Xue & Runwei Wang & Hengquan Yang, 2021. "Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25226-x
    DOI: 10.1038/s41467-021-25226-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25226-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25226-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianjiao Wang & Yu Xin & Bingfeng Chen & Bin Zhang & Sen Luan & Minghua Dong & Yuxuan Wu & Xiaomeng Cheng & Ye Liu & Huizhen Liu & Buxing Han, 2024. "Selective hydrodeoxygenation of α, β-unsaturated carbonyl compounds to alkenes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yuzhu Ma & Hongjin Zhang & Runfeng Lin & Yan Ai & Kun Lan & Linlin Duan & Wenyao Chen & Xuezhi Duan & Bing Ma & Changyao Wang & Xiaomin Li & Dongyuan Zhao, 2022. "Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25226-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.