IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28606-z.html
   My bibliography  Save this article

Ammonia pools in zeolites for direct fabrication of catalytic centers

Author

Listed:
  • Jie Yao

    (School of Engineering, University of Toyama)

  • Yingluo He

    (School of Engineering, University of Toyama)

  • Yan Zeng

    (School of Engineering, University of Toyama)

  • Xiaobo Feng

    (School of Engineering, University of Toyama
    Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology)

  • Jiaqi Fan

    (School of Engineering, University of Toyama)

  • Shoya Komiyama

    (School of Engineering, University of Toyama)

  • Xiaojing Yong

    (National Energy Group Ningxia Coal Industry Co., Ltd.)

  • Wei Zhang

    (National Energy Group Ningxia Coal Industry Co., Ltd.)

  • Tiejian Zhao

    (National Energy Group Ningxia Coal Industry Co., Ltd.)

  • Zhongshan Guo

    (National Energy Group Ningxia Coal Industry Co., Ltd.)

  • Xiaobo Peng

    (School of Engineering, University of Toyama
    National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University)

  • Guohui Yang

    (School of Engineering, University of Toyama
    State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences)

  • Noritatsu Tsubaki

    (School of Engineering, University of Toyama)

Abstract

Reduction process is a key step to fabricate metal-zeolite catalysts in catalytic synthesis. However, because of the strong interaction force, metal oxides in zeolites are very difficult to be reduced. Existing reduction technologies are always energy-intensive, and inevitably cause the agglomeration of metallic particles in metal-zeolite catalysts or destroy zeolite structure in severe cases. Herein, we disclose that zeolites after ion exchange of ammonium have an interesting and unexpected self-reducing feature. It can accurately control the reduction of metal-zeolite catalysts, via in situ ammonia production from ‘ammonia pools’, meanwhile, restrains the growth of the size of metals. Such new and reliable ammonia pool effect is not influenced by topological structures of zeolites, and works well on reducible metals. The ammonia pool effect is ultimately attributed to an atmosphere-confined self-regulation mechanism. This methodology will significantly promote the fabrication for metal-zeolite catalysts, and further facilitate design and development of low-cost and high-activity catalysts.

Suggested Citation

  • Jie Yao & Yingluo He & Yan Zeng & Xiaobo Feng & Jiaqi Fan & Shoya Komiyama & Xiaojing Yong & Wei Zhang & Tiejian Zhao & Zhongshan Guo & Xiaobo Peng & Guohui Yang & Noritatsu Tsubaki, 2022. "Ammonia pools in zeolites for direct fabrication of catalytic centers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28606-z
    DOI: 10.1038/s41467-022-28606-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28606-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28606-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryong Ryoo & Jaeheon Kim & Changbum Jo & Seung Won Han & Jeong-Chul Kim & Hongjun Park & Jongho Han & Hye Sun Shin & Jae Won Shin, 2020. "Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis," Nature, Nature, vol. 585(7824), pages 221-224, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feilong Xing & Jiamin Ma & Ken-ichi Shimizu & Shinya Furukawa, 2022. "High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Shuang Liu & Yong Li & Xiaojuan Yu & Shaobo Han & Yan Zhou & Yuqi Yang & Hao Zhang & Zheng Jiang & Chuwei Zhu & Wei-Xue Li & Christof Wöll & Yuemin Wang & Wenjie Shen, 2022. "Tuning crystal-phase of bimetallic single-nanoparticle for catalytic hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Yuzhu Ma & Hongjin Zhang & Runfeng Lin & Yan Ai & Kun Lan & Linlin Duan & Wenyao Chen & Xuezhi Duan & Bing Ma & Changyao Wang & Xiaomin Li & Dongyuan Zhao, 2022. "Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Xiaofeng Gao & Ling Zhu & Feng Yang & Lei Zhang & Wenhao Xu & Xian Zhou & Yongkang Huang & Houhong Song & Lili Lin & Xiaodong Wen & Ding Ma & Siyu Yao, 2023. "Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Yifeng Liu & Zhiqiang Liu & Yu Hui & Liang Wang & Jian Zhang & Xianfeng Yi & Wei Chen & Chengtao Wang & Hai Wang & Yucai Qin & Lijuan Song & Anmin Zheng & Feng-Shou Xiao, 2023. "Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson’s catalyst for hydroformylation of olefins," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28606-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.